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A Selection Concerns

Our eBay data are not a complete census of secondary-market activity, and for this reason one

might worry that our results in Section V.A. are a�ected by selection. We have three specific

concerns.

The first potential concern is that our analysis only uses successful eBay listings – listings where

either the seller’s Buy-it-Now price was accepted, or where the seller’s auction elicited bids of at

least their reserve price. For any particular listing, our estimate of aftermarket value conditional on

success would be higher than that conditional on failure, so we might worry about a positive bias

entering our analysis of the secondary market. This would cause us to over-estimate the prevalence

of profitable resale opportunities. Since our main results in Section V.A. suggest that arbitrage

profits are small, we do not need to worry about this type of selection driving our main results.1

A second potential concern is specific to eBay Buy-it-Now listings. Suppose that eBay sellers

set their Buy-it-Now price equal to their tickets’ true average aftermarket value plus a noise term

that represents seller error. We then will observe more sales when the seller error term is negative

than when it is positive. This will cause a negative bias in our estimate of secondary-market values,

and hence cause us to under-estimate the returns to speculation. However, arbitrage profits are

actually higher for pure Buy-it-Now listings (+$23.86) than for all other listings (-$13.46).2 Thus,

our results do not appear to be driven by eBay sellers who set their Buy-it-Now prices too low.
1Our main results are also not driven by selection stemming from the fact that seat numbers are not typically

observed by eBay buyers. This institutional feature would allow professional resellers to make profits by acquiring
low-quality seats within rows in the primary market, as long as such behavior is not fully accounted for by buyers in
the secondary market. Such selection, though, would again cause us to over-estimate the returns to speculation.

2This finding is consistent with results in Einav et al. (2015), which suggest that Buy-it-Now transaction prices
are consistently higher than non-BIN transaction prices, across a wide variety of eBay categories.
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A third potential concern relates to our only seeing the portion of the aftermarket that occurs

on eBay, as opposed to other venues such as StubHub. If the eBay component of the aftermarket

is a random sample of the total aftermarket, then our use of just eBay data will cause us to have

less power than if we had the full aftermarket, but will not cause bias. If the eBay component is

non-random, however, this could cause bias. No arbitrage logic partly mitigates this concern: if

eBay prices are systematically lower than StubHub prices (each net of fees), then arbitrageurs can

buy on eBay to resell on StubHub (cf. Sweeting, 2012). However, we worry about the following:

what if a seller’s strategy is to initially post their tickets at a high fixed price on a venue such as

StubHub, and only if that fixed-price posting is unsuccessful, to run an auction on eBay. That is,

what if sellers use eBay as a last-minute “salvage market” to ensure that their tickets are sold.3

In this case eBay prices will be lower than average, which would cause us to under-estimate the

returns to speculation. Given the direction of our results in Section V.A., this is an important

concern.

To address this third concern, we compare the distribution of potential resale profits (as defined

in the main text) associated with resales on eBay that occur close to the event date, when we should

worry about salvage-market e�ects, with the potential resale profits associated with all other eBay

resales. See Figure A1. eBay sales in the last 30 days before the event are associated with mean

potential resale losses of -$24.16 per ticket, whereas the potential resale profits associated with all

other eBay sales are +$40.93 per ticket. Notice as well that the early distribution has a higher mode

than does the late distribution (small positive profits), and that the late distribution has a fatter

left tail (large losses). While these findings are consistent with the declining-price phenomenon

documented by Sweeting (2012), they also suggest that we should be worried about salvage-market

e�ects being present in our data.4

3The institutional reason why one might worry that sellers initially post on StubHub and then salvage on eBay, as
opposed to the other way around, is the di�erence between the two venues’ fee structures. StubHub does not charge
listing fees and allows sellers to maintain their fixed price listing for as long as they like; eBay does charge listing
fees, and depending on the type of seller most listings last for 7-10 days. Thus, posting a ticket at a high fixed price
for a long period of time is free on StubHub (not counting opportunity costs), but costly on eBay. Pushing in the
other direction, StubHub provides stronger buyer protection and transaction support than does eBay (e.g., ensuring
that the buyer successfully receives the tickets from the seller), and these services may be especially valuable when
the amount of time before an event is limited.

4Another interesting feature of the comparison of early to late eBay resales is that the primary-market auction
prices are substantially more informative of early resale values: the R2 of early eBay prices on TM primary-market
auction prices is 0.77, versus 0.55 for late, and 0.66 for the full sample. This is consistent with results in Sweeting
(2012), which show that the variance of secondary-market prices is much higher in the final days before an event.

2



Figure A1. Potential resale profits, late eBay sales versus all other eBay sales
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Notes: Late eBay sales are defined as eBay sales that occur within the last 30 days before the event. For more details,
see the text.

A conservative response is to discard secondary-market data from the final days before the

concert occurs as possibly tainted, and interpret the +$40.93 mean potential resale profits prior to

the last 30 days as a conservative upper bound on potential resale profits.5 A second response is

that failing to resell early is a real risk in this market (cf. Board and Skrzypacz, 2016),6 and that the

returns to speculation should be calculated based on the full sample of early and late eBay resales.

A piece of evidence in support of this latter interpretation comes from looking at the di�erence

between early eBay resales conducted using eBay’s pure fixed-price selling format and eBay’s pure

auction format. Early pure BIN listings are associated with large, statistically significant profits of

$48.24 per ticket. Early pure auctions, by contrast, are associated with negative profits of -$20.00

per ticket.7 Early BIN listings are where we should be most worried about our first selection concern,
5The 95% confidence interval of this pre-last-30-days estimate is [$26.64, $54.28]. If we discard the final 15 days,

rather than 30, the estimate is $34.82 (95% CI: [$21.63, $47.87]).
6Board and Skrzypacz (2016) characterize the optimal dynamic mechanism for sellers of perishable goods when

buyers are forward looking. The optimal mechanism involves declining posted prices, followed by an auction in the
final period. The auction can be interpreted as a salvage market, since its purpose is to ensure sale (modulo an
optimally set reserve price) in the last period before the good expires. See Sweeting (2012) for further discussion of
this paper and related dynamic pricing literature.

7Following Einav et al. (2015), we classify an eBay sale as pure fixed price if the listing uses a Buy-it-Now price
and does not allow bidders to bid less than the BIN amount, and classify an eBay sale as a pure auction if it does
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namely, that we only observe arbitrage profits for successful eBay listings. Using a high BIN price

early also is consistent with optimal dynamic pricing behavior (Board and Skrzypacz, 2016). Early

auction listings, on the other hand, should represent an unbiased estimate of the aftermarket value

of the tickets at that particular moment in time. The fact that these profits are negative suggests

that the TM primary-market auctions are not leaving large positive secondary-market profits on

the table.8

B Additional Robustness Tests

B.A. Robustness of Main Results to Alternative Matching Specifications

As discussed in Section IV.C., there are four potential ways to match primary- and secondary-

market observations within the same concert-section-row tuple. In our main specification, we match

each Ticketmaster primary-market transaction with the average price of the eBay secondary-market

transactions for the c-s-r in question. This approach allows us to exploit all of the variation in the

winning bids in Ticketmaster’s high-quality dataset. In this section, we consider the robustness

of our results to three alternative matching specifications. First, we match each secondary-market

transaction with the average price of the primary-market transactions for the c-s-r in question. Next,

for each c-s-r, we match the average price of the primary-market transactions with the average price

of the secondary-market transactions. Last, for each c-s-r, we match the minimum primary-market

auction price with the average secondary-market price. We consider this specification to address

the possibility that, within a c-s-r, bidders who paid higher prices in the primary-market auctions

were less likely to resell their tickets in the secondary market.

Table B1 lists the average profits associated with buying tickets in the TM primary-market

auctions and then reselling in the eBay secondary market, for each of four above-discussed matching

specifications. 95% confidence intervals are calculated using the bootstrap, with the data clustered

at the concert level (cf. footnote 27 in the main text).

not use a BIN and uses a low starting bid. The -$20.00 figure in the text defines a low starting bid as < 50% of the
ticket’s face value. If we use < 10% instead, the figure is -$15.75.

8The early pure auctions exercise can also be interpreted as a response to the first selection concern described
above. Since pure auctions nearly always result in a sale, one need not worry about bias from the use of only successful
eBay listings. Under this interpretation, the -$20.00 can be viewed as a conservative lower bound on potential resale
profits.
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Over all of our specifications, the 95% confidence intervals admit estimates of potential resale

profits, net of eBay transaction fees, ranging from -$38.52 to +$18.59.
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B.B. Robustness of Main Results to Assumptions on eBay Transaction Fees

While all eBay sellers pay eBay fees (i.e., final-value fees and insertion fees), we do not observe

whether a given eBay seller transacted using PayPal, or some other method such as cash or check.

Therefore, in our main specification, we subtract eBay fees from the eBay transaction price, but

do not consider PayPal fees, which were roughly a bit less than 3% of the eBay sale price at the

time of our data.9

Table B2 reports gross profits, profits net of eBay fees, and profits net of both eBay fees and

PayPal fees. Over all of our these specifications, the 95% confidence intervals admit estimates of

profits ranging from -$16.10 to +$30.31.

9See footnote 22 in the main text for further details on PayPal fees.
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B.C. Robustness of Results on Bidder Experience

In Section VI, we show that experienced bidders, defined as those who win at least 10 TM auctions,

earn modest positive arbitrage profits from buying in the TM auctions and reselling on eBay. The

potential resale profits of experienced bidders are significantly higher than those of inexperienced

bidders, namely, those who win less than 10 TM auctions. Since our classification of experienced

and inexperienced bidders is somewhat arbitrary, we consider the robustness of our results on bidder

experience to an alternative classification.

In particular, we define an experienced bidder as one who wins TM auctions for concerts in

at least two di�erent cities, performed by at least two di�erent artists. Therefore inexperienced

bidders are those who win tickets to just one event, those who are avid followers of a given artist

(who follow just one artist across several cities), and those who simply enjoy live musical events

(i.e., those who attend several concerts in a given city). The reasoning behind this alternative

specification is that bidders who are not professional resellers are likely to fall into one of the three

aforementioned categories of inexperienced bidders. Table B3 shows that the results on bidder

experience are qualitatively unchanged when we employ our alternative classification. In both the

main and the alternative specifications, (i) experienced bidders have small positive potential resale

profits (significant at 1% and 10%, respectively), (ii) inexperienced bidders have essentially zero

potential resale profits, and (iii) the profits of experienced bidders are significantly larger than those

of inexperienced bidders (significant at 1%). Our results also remain qualitatively unchanged if we

define either measure of bidder experience based on the number of auctions the bidder participated

in rather than the number of auctions the bidder won.
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C Proofs

Proof of Proposition 1

Proof. Let us look for a symmetric equilibrium in which all bidders use the same bidding function b (·).
We initially assume and later prove that b (·) is strictly increasing, so that there is a one-to-one relationship
between bids and valuations. Therefore we can think of a bid b̂ as the submission of a valuation v̂, such
that b̂ = b (v̂). The bidder can then be thought of as choosing the submitted valuation v̂ optimally, given
the bidding function b (·). The bidder thus maximizes her expected value from the auction by solving the
following program:

max
v̂

Kÿ

k=1

[v–k ≠ b (v̂)] Pk (v̂) ,

where
Pk (x) =

!n ≠ 1
k ≠ 1

"
F (x)n≠k (1 ≠ F (x))k≠1 (C.1)

is the probability that a bidder with valuation x wins the kth object. In order for b (·) to define a symmetric
equilibrium, the first-order condition requires that the bidder’s expected value must be maximized at her
true valuation v. That is,

Kÿ

k=1

!
[v–k ≠ b (v)] P Õ

k (v) ≠ Pk (v) bÕ (v)
"

= 0. (C.2)

We can use (C.2) to solve for the equilibrium bidding function as follows. Rearranging terms,

Kÿ

k=1
v–kP Õ

k (v) =
Kÿ

k=1
(b (v) P Õ

k (v) + Pk (v) bÕ (v))

= d

dv

A
b (v)

Kÿ

k=1
Pk (v)

B

=∆ b (v)
Kÿ

k=1
Pk (v) ≠ b (0)

Kÿ

k=1
Pk (0) =

⁄ v

0
x

Kÿ

k=1
–kP Õ

k (x) dx.

But Pk (0) = 0, ’k œ {1, · · · , K}, and so

b (v) = 1qK

k=1 Pk (v)

⁄ v

0
x

Kÿ

k=1

–kP Õ
k (x) dx. (C.3)

We can then use integration by parts to derive (1) in the main text:

b (v) = 1qK

k=1 Pk (v)

Kÿ

k=1

⁄ v

0
x–kP Õ

k (x) dx

= 1qK

k=1 Pk (v)

A
Kÿ

k=1

–k [xPk (x)]|x=v
x=0 ≠

Kÿ

k=1

⁄ v

0
–kPk (x) dx

B

= 1qK

k=1 Pk (v)

A
Kÿ

k=1

Pk (v) (v–k) ≠
Kÿ

k=1

⁄ v

0
–kPk (x) dx

B
.
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To finish the proof we must confirm, as we had assumed above, that the bidding function (1) in the main
text is strictly increasing. Using (C.3), notice that

bÕ (v) =

!qK

k=1 Pk (v)
" !

v
qK

k=1 –kP Õ
k (v)

"
≠

!qK

k=1 P Õ
k (v)

" !s v

0 x
qK

k=1 –kP Õ
k (x) dx

"
!qK

k=1 Pk (v)
"2

=∆ Sign
)

bÕ (v)
*

= Sign

IA
Kÿ

k=1

Pk (v)

B A
v

Kÿ

k=1

–kP Õ
k (v)

B
≠

A
Kÿ

k=1

P Õ
k (v)

B A⁄ v

0
x

Kÿ

k=1

–kP Õ
k (x) dx

BJ
.

Lemma 1. For any x œ (0, v̄),
qK

k=1 –kP Õ
k (x) > 0.

Proof. Let x œ (0, v̄). Define –K+1 © 0. We have

Kÿ

k=1

–kP Õ
k (x) =

Kÿ

k=1

–k

!n ≠ 1
k ≠ 1

"
F (x)n≠k≠1 (1 ≠ F (x))k≠2 [(n ≠ k) (1 ≠ F (x)) ≠ (k ≠ 1) F (x)] f (x)

= (n ≠ 1) f (x)

A
Kÿ

k=1

–k

!n ≠ 2
k ≠ 1

"
F (x)n≠k≠1 (1 ≠ F (x))k≠1 ≠

Kÿ

k=2

–k

!n ≠ 2
k ≠ 2

"
F (x)n≠k (1 ≠ F (x))k≠2

B

= (n ≠ 1) f (x)

A
Kÿ

k=1

–k

!n ≠ 2
k ≠ 1

"
F (x)n≠k≠1 (1 ≠ F (x))k≠1 ≠

Kÿ

k=1

–k+1
!n ≠ 2

k ≠ 1
"

F (x)n≠k≠1 (1 ≠ F (x))k≠1

B

=
Kÿ

k=1

[–k ≠ –k+1] (n ≠ 1)
!n ≠ 2

k ≠ 1
"

F (x)n≠k≠1 (1 ≠ F (x))k≠1 f (x)

> 0.

The first equality follows from the definition of P Õ
k (·), and the second results from algebraic manipulation.

The third equality is obtained by shifting the index of the second sum and using –K+1 = 0. The last equality
results from grouping terms, and the inequality is due to the fact that {–k}K+1

k=1 is a strictly decreasing
sequence. This completes the proof of the Lemma.

From Lemma 1,

⁄ v

0
x

Kÿ

k=1

–kP Õ
k (x) dx < v

⁄ v

0

Kÿ

k=1

–kP Õ
k (x) dx

= v

Kÿ

k=1

–kPk (v) .

Hence
A

Kÿ

k=1

Pk (v)

B A
v

Kÿ

k=1

–kP Õ
k (v)

B
≠

A
Kÿ

k=1

P Õ
k (v)

B A⁄ v

0
x

Kÿ

k=1

–kP Õ
k (x) dx

B

> v

CA
Kÿ

k=1

Pk (v)

B A
Kÿ

k=1

–kP Õ
k (v)

B
≠

A
Kÿ

k=1

P Õ
k (v)

B A
Kÿ

k=1

–kPk (v)

BD

12



Therefore it su�ces to show that
A

Kÿ

k=1

Pk (v)

B A
Kÿ

k=1

–kP Õ
k (v)

B
≠

A
Kÿ

k=1

P Õ
k (v)

B A
Kÿ

k=1

–kPk (v)

B
Ø 0

≈∆
Kÿ

j=1

Kÿ

k=1

Pk (v) –jP Õ
j (v) ≠

Kÿ

j=1

Kÿ

k=1

P Õ
j (v) –kPk (v) Ø 0

≈∆
Kÿ

j=1

Kÿ

k=1

(–j ≠ –k) Pk (v) P Õ
j (v) Ø 0

≈∆
K≠1ÿ

j=1

Kÿ

k=j+1

(–j ≠ –k)¸ ˚˙ ˝
>0, since j<k

#
Pk (v) P Õ

j (v) ≠ Pj (v) P Õ
k (v)

$
Ø 0.

where the second, third and fourth inequalities each follow from rearranging terms. It is thus su�cient to
show that, for any v œ [0, v̄] and any j < k,

Pk (v) P Õ
j (v) ≠ Pj (v) P Õ

k (v) Ø 0.

Note that

Pk (v) P Õ
j (v)

=
Ë!n ≠ 1

k ≠ 1
"

F (v)n≠k (1 ≠ F (v))k≠1
È Ë!n ≠ 1

j ≠ 1
"

F (v)n≠j≠1 (1 ≠ F (v))j≠2 [(n ≠ j) (1 ≠ F (v)) ≠ (j ≠ 1) F (v)] f (v)
È

=
!n ≠ 1

k ≠ 1
"!n ≠ 1

j ≠ 1
"

F (v)2n≠j≠k≠1 (1 ≠ F (v))j+k≠3 [(n ≠ j) ≠ (n ≠ 1) F (v)] f (v) .

The first equality is due to the definitions of Pk (·) and P Õ
j (·) and the second is obtained from algebraic

simplification. It follows that

Pk (v) P Õ
j (v) ≠ Pj (v) P Õ

k (v) =
!n ≠ 1

k ≠ 1
"!n ≠ 1

j ≠ 1
"

F (v)2n≠j≠k≠1 (1 ≠ F (v))j+k≠3 [(n ≠ j) ≠ (n ≠ k)] f (v)

= (k ≠ j)
!n ≠ 1

k ≠ 1
"!n ≠ 1

j ≠ 1
"

F (v)2n≠j≠k≠1 (1 ≠ F (v))j+k≠3 f (v)

Ø 0,

as required. Therefore, the bidding function (1) in the main text is indeed strictly increasing. This in turn
implies that the resulting allocation is e�cient.
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Proof of Proposition 2

Proof. The proof will proceed by induction. Bidders draw their private valuations from F (·), and the
mechanics of the auction are as described previously. We will construct K auctions that, if held sequentially,
yield the GEA.

First, a second-price English auction is conducted among the n bidders for K units of object K, each
worth vi to bidder i (recall that –K = 1). The last K surviving bidders win the object, and pay the price at
which the last drop-out occurred.

Once the above auction has concluded, the K winners of the auction immediately enter an all-pay
English auction in which K bidders compete for K ≠ 1 upgrades from object K to object K ≠ 1, each
worth (–K≠1 ≠ –K) vi to bidder i. After one drop-out, the remaining bidders win the object, and all bidders
(including the losing bidder) pay the price at which the drop-out occurred. Notice that at the end of this
auction, the K ≠ 1 winners have object K ≠ 1, the loser keeps object K, and the total payment across the
two auctions of all K participants is the drop-out price of the losing bidder in the auction for the upgrade
to object K ≠ 1.

Another all-pay auction is then held among the K ≠ 1 winners of the previous auction, o�ering K ≠ 2
upgrades from object K ≠1 to object K ≠2. Proceeding in this manner, a total of K ≠1 all-pay auctions are
conducted sequentially. In each such auction, the bidders are the winners of the previous auction, and an
upgrade of one quality level is awarded to all bidders but one. The process naturally stops after the quality
upgrade from object 2 to object 1 has been sold.

In aggregate, bidders who do not win any object pay nothing, and bidders who win an object pay the
price at which they drop out (except for the winner of object 1, who pays the price at which the second-
to-last survivor drops out). Therefore when the above K auctions are conducted sequentially, the resulting
composite auction is the GEA.

Now let us analyze any of the above-described all-pay auctions in isolation: k + 1 bidders compete for k

objects, each worth (–k ≠ –k+1) vi to bidder i. The following Lemma will be useful in our proof.

Lemma 2. The unique symmetric perfect Bayesian equilibrium of the above all-pay English auction is
characterized by:

T (v; v, k) = k (–k ≠ –k+1)
⁄ v

v

xh (x) dx.

Proof. This result follows immediately from Lemma 3 of Bulow and Klemperer (1999).

Consider also the initial second-price auction for object K in isolation.

Lemma 3. The unique symmetric perfect Bayesian equilibrium of the initial second-price English auction
is characterized by:

T (v; v, K) = v ≠ v.

Proof. Since losing bidders do not pay, a bidder v would strictly prefer to remain in the auction if the total
time that has elapsed is less than v, since winning object K would give her positive surplus in this event.
Conversely, she would strictly prefer to drop out if the total time that has elapsed is greater than v, because
she would get negative surplus if she were to win the object. Therefore she will drop out when the total time
that has elapsed is v. When all bidders follow this strategy, her waiting time at any instant can be written
as T (v; v, k) = v ≠ v.

14



In what follows, we will refer to the subgame that begins with the auction for the upgrade to object k
as subgame k. Now analyze subgame 1, from the perspective of a bidder with valuation v. Recall that this
is the last subgame of the GEA. There is one other bidder remaining, and the bidders are competing for
one upgrade from object 2 to object 1. Both bidders have already won object 2, but importantly the benefit
from this object is sunk. Likewise their waiting costs from surviving to this point in the game are sunk.
Therefore we can conclude from Lemma 2 that the unique symmetric perfect Bayesian equilibrium of this
subgame is defined by (2) in the main text, with k = 1.

Next, consider subgame k, 1 < k < K. Consider a bidder with value v, and suppose that all other
players bid according to (2) in the main text. Suppose additionally that the bidder in question knows that
she will follow the proposed strategies in each subgame j < k, conditional on surviving until subgame j is
reached. We know from Lemma 2 that (2) gives the myopic best response of the bidder in the auction for the
upgrade to object k. Hence it could not be optimal to deviate by dropping out earlier than she would under
the proposed equilibrium - the bidder would be giving up positive expected utility in the present auction
and possibly in future auctions.

Suppose instead that the bidder drops out later than she would under (2), i.e., she plays as if she has
valuation vú > v. There are three possibilities, each of which occur with positive probability:

1. Both types vú and v would not win object k. Then the bidder strictly prefers to bid as type v, since
she would have a lower drop-out price by doing so.

2. Both types vú and v would win object k. Then since the bidder follows T (v; ·, ·) in all future auctions,
her expected payo� is the same from playing as either type.

3. Type v would drop out in the auction for object k, but type vú would win object k. Then at the start
of subgame k ≠ 1, v is less than the lowest possible type of the other bidders who have not dropped
out, vk≠1. Since the bidder follows T

!
v; vk≠1, k ≠ 1

"
in this auction, she must drop out immediately.

Therefore her expected utility from misrepresenting her type di�ers from that under truthful play only
in terms of her payo� from the auction for object k. But from Lemma 2, her expected surplus in this
auction is maximized by playing truthfully.

Thus the bidder strictly prefers playing truthfully to bidding as type vú > v. It follows that when all other
bidders follow the proposed equilibrium strategies and the bidder knows that she will follow (2) in all future
subgames, her optimal waiting time in the auction for object k is also given by T (v; ·, k). By induction,
then, (2) defines the unique symmetric perfect Bayesian equilibrium of subgame k, k < K.

Moving to the first auction, consider again a bidder with value v, who knows that all other bidders are
bidding according to (2), and that she will also follow the proposed equilibrium strategies in future subgames
k < K, if she is still active in those subgames. When all other players follow the proposed strategies, they
drop out precisely when the price equals their valuation of object K. Lemma 3 tells us that this strategy is
the myopic best response in the auction for object K. Using an argument analogous to the one above, the
bidder cannot profitably deviate from (2) by playing as though her valuation is higher or lower than v. By
an additional step of induction, we can thus conclude that (2) defines the unique symmetric perfect Bayesian
equilibrium of the GEA.

Finally, the fact that the equilibrium is e�cient follows immediately from (2); ’k œ {1, 2, · · · , K},
T (·; v, k) is clearly strictly increasing.
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Proof of Proposition 3

Proof. Since the sealed-bid and ascending TM auctions are e�cient, and the lowest type gets zero surplus in
both auctions, Myerson’s Lemma implies that all bidders have the same expected surplus in both auctions.
Moreover, all bidders have the same expected surplus in both auctions conditional on losing (namely, zero).
It follows that all bidders must also have the same expected surplus in both auctions conditional on winning
some object. Hence any bidder’s expected surplus conditional on winning some object, in either auction, can
be expressed as

s(v; npro, nfan) =
qK

k=1[v–k ≠ b(v; npro, nfan)]Pk(v; nfan, npro)
qK

k=1 Pk(v; npro, nfan)

=
Kÿ

k=1

[v–k ≠ b(v; npro, nfan)]
1

Pk(v; npro, nfan)
qK

k=1 Pk(v; npro, nfan)

2

where

Pk(v; npro, nfan) =
!npro + nfan ≠ 1

k ≠ 1
"

F (v; npro, nfan)npro+nfan≠k
!

1 ≠ F (v; npro, nfan)
"k≠1

where we make the dependence of F (·) on npro and nfan explicit in equation (3) in the main text, and b(·)
is the sealed-bid auction equilibrium bidding function (1) in the main text.

Plugging in the bidding function from (1) and doing some algebraic manipulation, we find that

s(v; npro, nfan) =
⁄ v

0

qK

k=1 –kPk(x; npro, nfan)
qK

k=1 Pk(v; npro, nfan)
dx. (C.4)

Now we split up the analysis into two cases, v œ [w ≠ ‘, w) and v = w, and analyze the behavior of the
conditional surplus function s(·) as npro æ Œ.

(i) v œ [w ≠ ‘, w):

First, fix v œ (w ≠ ‘, w). We will discuss the case v = w ≠ ‘ separately at the end. Define finpro(x) ©qK

k=1
–kPk(x;npro,nfan)qK

k=1
Pk(v;npro,nfan)

, so that (C.4) becomes

s(v; npro, nfan) =
⁄ v

0
finpro (x)dx. (C.5)

Now we aim to show that finpro(x) æ 0 for all x œ (0, v). To do this, we will first show that the
conditional probability terms Pk(x;npro,nfan)qK

k=1
Pk(v;npro,nfan)

go to 0 for all x œ (0, v) and all k œ {1, . . . , K}.

Fix x œ (0, v). For all k œ {1, . . . , K} we get that

lim
nproæŒ

Pk(x; npro, nfan)
qK

k=1 Pk(v; npro, nfan)
Æ lim

nproæŒ

Pk(x; npro, nfan)
Pk(v; npro, nfan)

= lim
nproæŒ

51
F (x; npro, nfan)
F (v; npro, nfan)

2npro+nfan≠k11 ≠ F (x; npro, nfan)
1 ≠ F (v; npro, nfan)

2k≠1
6

Since we now have a limit of the form limn f(n)g(n) we use a trick to evaluate the limit properly by re-
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expressing the quantity using exponents and logarithms.

lim
nproæŒ

C1F (x; npro, nfan)
F (v; npro, nfan)

2npro+nfan≠k11 ≠ F (x; npro, nfan)
1 ≠ F (v; npro, nfan)

2k≠1
D

=
C

lim
nproæŒ

exp
I

log( F (x;npro,nfan)
F (v;npro,nfan) )

1
npro+nfan≠k

JDC
lim

nproæŒ

11 ≠ F (x; npro, nfan)
1 ≠ F (v; npro, nfan)

2k≠1
D

= exp
I

lim
nproæŒ

log( F (x;npro,nfan)
F (v;npro,nfan) )

1
npro+nfan≠k

J1
lim

nproæŒ

1 ≠ F (x; npro, nfan)
1 ≠ F (v; npro, nfan)

2k≠1

passing limits through both continuous functions

= exp
I

log(limnproæŒ
F (x;npro,nfan)
F (v;npro,nfan) )

limnproæŒ
1

npro+nfan≠k

J1
lim

nproæŒ

1 ≠ F (x; npro, nfan)
1 ≠ F (v; npro, nfan)

2k≠1

distributing limits in the first term and passing further through the continuous log(·)

= exp
I

log( Fpro(x)
Fpro(v) )

limnproæŒ
1

npro+nfan≠k

J11 ≠ Fpro(x)
1 ≠ Fpro(v)

2k≠1

finding the well-defined limits in both terms

= exp{≠Œ}
11 ≠ Fpro(x)

1 ≠ Fpro(v)

2k≠1

since log(Fpro(x)
Fpro(v) ) < 0 because x < v

=0,

and so limnproæŒ
Pk(x;npro,nfan)qK

k=1
Pk(v;npro,nfan)

Æ 0.

Since limnproæŒ
Pk(x;npro,nfan)qK

k=1
Pk(v;npro,nfan)

Ø limnproæŒ 0 = 0 we have that limnproæŒ
Pk(x;npro,nfan)qK

k=1
Pk(v;npro,nfan)

=

0 for all x œ (0, v) and all k œ {1, . . . , K}. Thus we have that for all x œ (0, v)

lim
nproæŒ

finpro(x) = lim
nproæŒ

qK
k=1 –kPk(x; npro, nfan)

qK
k=1 Pk(v; npro, nfan)

=
Kÿ

k=1
–k lim

nproæŒ

1 Pk(x; npro, nfan)
qK

k=1 Pk(v; npro, nfan)

2

= 0.

By (C.5)

lim
nproæŒ

s(v; npro, nfan) = lim
nproæŒ

⁄ v

0
finpro(x)dx

and so we now want to argue that we can pass the limit into the integral. To do this we will use the Lebesgue
Dominated Convergence Theorem.10

10The Lebesgue Dominated Convergence Theorem (Royden and Fitzpatrick, 2010, p. 88) is the following: Let {fn}
be a sequence of measurable functions on E, a measurable set of the real numbers. Suppose there is a function g that
is integrable over E (meaning that

s
E

|g| < Œ) and dominates {fn} on E in the sense that |fn| Æ g on E for all n.
Then, if {fn} æ f pointwise almost everywhere on E (meaning that it converges to f pointwise everywhere except
possibly on a set of measure 0), then f is integrable over E and
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Note that the function finpro(·) is defined on [0, v], and we have shown that finpro(·) converges to 0 almost
everywhere on [0, v] (it converges at all points except possibly at the measure 0 set {0} fi {v}). We now need
a dominating function to apply the theorem.

By Lemma 1, finpro(·) is increasing on (0, v). It is also continuous and so it must be that finpro(x) Æ
finpro(v). Moreover, we have that

finpro (v) =
qK

k=1 –kPk(v; npro, nfan)
qK

k=1 Pk(v; npro, nfan)
Æ –1

and so if we define g(x) © –1 then we have our dominating function since |finpro(x)| Æ g(x) for all x œ [0, v]
and

s v
0 |g(x)|dx = v–1 < Œ. Thus by applying the Dominated Convergence Theorem, we have that

lim
nproæŒ

s(v; npro, nfan) = lim
nproæŒ

⁄ v

0
finpro(x)dx =

⁄ v

0
lim

nproæŒ
finpro(x)dx = 0.

Since we arbitrarily fixed v œ (w ≠ ‘, w) at the beginning, we are done with this case as required.
The proof for v = w≠‘ uses a similar argument but requires an algebraic simplification before we convert

the expression that has the form limn f(n)g(n). For all x œ (0, w ≠ ‘] we have F (x; npro, nfan) = nfanFfan(x)
npro+nfan

and so

lim
nproæŒ

Pk(x; npro, nfan)
Pk(v; npro, nfan)

= lim
nproæŒ

51
F (x; npro, nfan)
F (v; npro, nfan)

2npro+nfan≠k11 ≠ F (x; npro, nfan)
1 ≠ F (v; npro, nfan)

2k≠1
6

= lim
nproæŒ

51
Ffan(x)

Ffan(w ≠ ‘)

2npro+nfan≠k
3 1 ≠ nfan

nfan+npro
Ffan(x)

1 ≠ nfan

nfan+npro
Ffan(w ≠ ‘)

4k≠16

and this goes to 0 for all x œ (0, w ≠ ‘) and all k œ {1, . . . , K} since the left term goes to 0 and the right
term is finite in the limit. The argument for passing the limit through the integral is identical.

(ii) v = w :

Define finpro(x) ©
qK

k=1
–kPk(x;npro,nfan)qK

k=1
Pk(w;npro,nfan)

, so that (C.4) becomes

s(w; npro, nfan) =
⁄ w

0
finpro (x)dx. (C.6)

In the previous case we showed that Pk(x;npro,nfan)qK

k=1
Pk(v;npro,nfan)

converged to 0 by bounding this ratio explicitly

and showing the bound goes to 0. We now show that Pk(x;npro,nfan)qK

k=1
Pk(w;npro,nfan)

converges to 0 by showing that

the denominator converges to something positive and finite and then showing that the numerator converges
to 0.

lim
næŒ

⁄

E

fn =
⁄

E

f.

Since all the functions we deal with are continuous and defined on intervals, they are measurable, and intervals of
the real numbers are measurable sets.
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We have that

Pk(w; npro, nfan) =
!npro + nfan ≠ 1

k ≠ 1
"

F (w; npro, nfan)npro+nfan≠k
!

1 ≠ F (w; npro, nfan)
"k≠1

=
!npro + nfan ≠ 1

k ≠ 1
"1

npro

npro + nfan
+

nfan

npro + nfan
Ffan(w)

2npro+nfan≠k1
nfan

npro + nfan

1
1 ≠ Ffan(w)

22k≠1

=
!npro + nfan ≠ 1

k ≠ 1
"1

1 ≠
nfan

npro + nfan

1
1 ≠ Ffan(w)

22npro+nfan≠k1
nfan

npro + nfan

1
1 ≠ Ffan(w)

22k≠1

where the second equality follows from Fpro(w) = 1 and the third equality follows from algebraic manipula-
tion. Define ⁄ © nfan(1 ≠ Ffan(w)) > 0 and n © npro + nfan. Note that n æ Œ as npro æ Œ. Then we
have that

Pk(w; npro, nfan) =
!n ≠ 1

k ≠ 1
"1

⁄

n

2k≠11
1 ≠

⁄

n

2n≠k

.

Since this is a Binomial probability with parameters (n ≠ 1, ⁄/n) and index k ≠ 1 Ø 0, a well known
statistics results gives us that it converges to a Poisson probability with parameter ⁄ and index k ≠ 1 Ø 0 as
n grows large for any fixed nfan. Thus we have that for all k œ {1, . . . , K}

lim
nproæŒ

Pk(w; npro, nfan) = ⁄k≠1

(k ≠ 1)!
e≠⁄ =

!
nfan(1 ≠ Ffan(w)

"k≠1

(k ≠ 1)!
e

≠nfan

!
1≠Ffan(w)

"

which is positive and finite for any finite nfan.
Thus, we have that for all x œ (0, w) and all k œ {1, . . . , K} each conditional probability term becomes

lim
npro æŒ

Pk(x; npro, nfan)
qK

k=1 Pk(w; npro, nfan)
=

limnpro æŒ Pk(x; npro, nfan)
qK

k=1

!
nfan(1≠Ffan(w)

"k≠1

(k≠1)! e
≠nfan

!
1≠Ffan(w)

" .

Now we aim to argue that limnpro æŒ Pk(x; npro, nfan) = 0 for all x œ (0, w) and all k œ {1, . . . , K}.
Note that for all x œ (0, w) and all k œ {1, . . . , K}, (

!
1 ≠ F (x; npro, nfan)

"k≠1 Æ 1 and so

Pk(x; npro, nfan) =
!npro + nfan ≠ 1

k ≠ 1
"

F (x; npro, nfan)npro+nfan≠k
!

1 ≠ F (x; npro, nfan)
"k≠1

Æ
!npro + nfan ≠ 1

k ≠ 1
"

F (x; npro, nfan)npro+nfan≠k

Æ
(npro + nfan ≠ 1)k≠1

(k ≠ 1)!F (x; npro, nfan)k≠npro≠nfan

where we use the fact that n!
(n≠k)! Æ nk in the last inequality and push the F (·) term into the denominator.

Now let G(x) © max{Fpro(x), Ffan(x)}. Then for all x œ (0, w) we have

F (x; npro, nfan) Æ G(x) < 1.

Hence,
Pk(x; npro, nfan) Æ

(npro + nfan ≠ 1)k≠1

(k ≠ 1)!F (x; npro, nfan)k≠npro≠nfan
Æ

(npro + nfan ≠ 1)k≠1

(k ≠ 1)!G(x)k≠npro≠nfan
.

As npro æ Œ the last expression above has the form Œ
Œ , and so we use l’Hopital’s Rule. Applying this

rule (k ≠ 1) times yields

lim
nproæŒ

(npro + nfan ≠ 1)k≠1

(k ≠ 1)!G(x)k≠npro≠nfan
= lim

nproæŒ

G(x)npro+nfan≠k

(≠ log[G(x)])k≠1

= 0.
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Thus we have that limnproæŒ Pk(x; npro, nfan) = 0 for all x œ (0, w) and all k œ {1, . . . , K} since
probabilities must be non-negative. This gives us that limnproæŒ

Pk(x;npro,nfan)qK

k=1
Pk(w;npro,nfan)

= 0 for all x œ (0, w)

and all k œ {1, . . . , K}. So for all x œ (0, w) we have that

lim
nproæŒ

finpro (x) = lim
nproæŒ

qK

k=1 –kPk(x; npro, nfan)
qK

k=1 Pk(w; npro, nfan)

=
Kÿ

k=1

–k lim
nproæŒ

1
Pk(x; npro, nfan)

qK

k=1 Pk(w; npro, nfan)

2

= 0.

By (C.6) we have that
lim

nproæŒ
s(w; npro, nfan) = lim

nproæŒ

⁄ w

0
finpro (x)dx

and we now want to pass the limit into the integral. To do this we appeal again to Lebesgue Dominated
Convergence. We have shown convergence almost everywhere on [0, w] using the same method used in the
previous case. Using Lemma 1 again we can use the same dominating function g(x) © –1. Thus by applying
the Dominated Convergence Theorem, we have that

lim
nproæŒ

s(w; npro, nfan) = lim
nproæŒ

⁄ w

0
finpro (x)dx =

⁄ w

0
lim

nproæŒ
finpro (x)dx = 0

as required for this case.

We have shown that ’v œ [w ≠ ‘, w], limnproæŒ s(v; npro, nfan) = 0 as required.
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