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Appendix for Online Publication
Waiting to Choose: The Role of Deliberation in Intertemporal Choice

Alex Imas, Michael A. Kuhn, and Vera Mironova

A. Relationship between Deliberation Time and Intertemporal Choice

In this section, we derive predictions of a simplified version of the imperfect
foresight model of Gabaix and Laibson (2017) for our setting.

Hypothesis 3: Consider a decision-maker (DM) chooses between (uE0 , u
L
1 ) and

(uL0 , u
E
1 ). For all i ∈ {E,L}, ui0, is received immediately and ui1 is received in the

following period. The DM knows the value of ui0 with certainty, but lacks perfect
information on the ‘true’ value of ui1 and must generate simulations to forecast
it. In the context of the first two studies, let (uL0 , u

E
1 ) represent the utility from

choosing to have only leisure time in WP1 such that all effort tasks are allocated
to WP2, and (uE0 , u

L
1 ) represent the utility of having only leisure in WP2 such

that all effort tasks are allocated to WP1. We consider the case where the DM
faces a tradeoff of allocating tasks to WP2, such that she has to do more total
tasks when she chooses (uL0 , u

E
1 ) than (uE0 , u

L
1 ). Thus, uL0 = uL1 > uE0 > uE1 . We

refer to the (uE0 , u
L
1 ) as the patient choice and (uL0 , u

E
1 ) as the impatient choice.

Following Gabaix and Laibson (2017), normalize the DM’s prior on ui1 to zero
such that u ∼ N(0, σ2

u). This can be interpreted as the average utility that could
be realized in WP2 given the choice set available to the DM. We consider the
case where waiting periods prompt additional simulations relative to when no
waiting periods. When the DM performs her first simulation of ui1, she draws an
unbiased signal of its value si1,1 = ui1 + ε1,1, where the first term in the subscript
(1, 1) corresponds to the time horizon and the second to the order of the signal
drawn. The simulation noise ε1,1 is drawn from ε1 ∼ N(0, σ2

ε1). Since we only
consider a one-period time horizon, σ2

ε1 = σ2
ε .

42 As a Bayesian, she integrates

this signal with her prior. The DM’s posterior forecast of ui1 can be represented
as Dsi1,1, where D = 1

1+σ2
ε /σ

2
u

. Integrating over the distribution of signals, we get

E1(ui1) = Dui1.
Before the initial simulation, the DM values the patient choice as uE0 and the

impatient choice as uL0 , and thus prefers the impatient choice. After the first sim-
ulation, the average DM values the patient choice as uE0 +DuL1 and the impatient
choice as uL0 + DuE1 . Because uL1 > uE1 , it is straightforward to show that the
DM’s valuation of the patient choice increases after the initial simulation.

To illustrate how successive simulations increase the valuation of the patient
choice relative to the impatient choice, let the DM draw a second signal si1,2 =

ui1 + ε1,2. She again updates her beliefs and obtains the posterior

(A1) Dsi1,1 +D(si1,2 −Dsi1,1) = D(1−D)si1,1 +Dsi1,2

42This is consistent with a one-period simulation under the proportional variance assumption of Gabaix
and Laibson (2017), σεt = t · σε.
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from Proposition 1 of Gabaix and Laibson (2017). Integrating over the distribu-
tion of signals, we get

(A2) E2(ui1) = D(1−D)ui1 +Dui1 = D(2−D)ui1 .

To illustrate the result, take a DM who is indifferent between the two choices
after an initial simulation, such that her forecasted utility in expectation can be
represented as

(A3) uE0 + E1(uL1 ) = uL0 + E1(uE1 )

After the second simulation, the left hand side becomes uE0 +E2(uL1 ) and the right
hand side becomes uL0 +E2(uE1 ). The change in valuation of the patient choice is
thus the change in the expectation of uL1 : D(2−D)uL1−DuL1 = D(1−D)uL1 . Corre-
spondingly, the change in the value of the impatient choice is D(1−D)uE1 . The dif-
ference in changes between the patient and impatient choices is D(1−D)(uL1−uE1 ).
Because D ∈ (0, 1), and uL1 > uE1 , the expression is positive, meaning that rela-
tive preference for the patient choice has increased. Therefore, the DM who was
indifferent after one simulation – and thus preferred the impatient choice before
any simulations – selects the patient option after two simulations.

More generally, define γ(N) ∈ [0, 1] as the relationship between deliberation
time, N , and simulation noise γ, with γ′(N) < 0. The Bayesian updating factor

becomes an “as-if” discount factor D(N) = 1
1+γ(N)α where α = σ2

ε
σ2
u

. Because

γ(N) is decreasing in N , D(N) is decreasing in N , and additional simulations
lead the decision maker closer to forecasting uL1 = uL0 > uE0 > uE1 without noise,
implying (uE0 , u

L
1 ) � (uL0 , u

E
1 ).43

B. Structural Estimation in the Online Effort Allocation Study

In this section, we discuss estimates of the utility parameters from equations (1),
(2) and (3). Since participants make allocation decisions between two periods,
each treatment on its own only reveals their one-hour discount factor for task
effort. Because the timing of the work periods and the allocation decision differs
by treatment, the variation in the theoretical interpretation of that discount factor
allows us to identify the parameters of interest. Specifically, the treatments were
designed to separately identify aggregate estimates of the exponential discount
factor δ, the present bias parameter β, and the simulation parameter Sk(t). The
parameter Sk(t) is meant to capture the effect of additional simulations of the
decision problem prompted by the waiting period. In the application of the
Gabaix and Laibson (2017) framework outlined in Section I.A, the parameter

can be represented as Sk(t) = Dk(t)
Dk+1(t) . Given the short horizon and the fact that

43Sincere thanks to an anonymous referee for helpful, detailed comments on this section.
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our experiment manipulates the waiting period over only one interval, we drop
the subscripts for the analysis, setting Sk(t) = S.

Our identification strategy is as follows. Participants in the Waiting Period
treatment solve the optimization problem in equation (2), as laid out in Sec-
tion I.A. We allow for present bias, such that the discount factor between periods

is equal to D1(1)
D1(0) = βδ. Participants in the Immediate treatment solve a similar

problem, shifted back by one period as in equation (1). The parameter S identi-
fies any additional discounting that occurs in the Immediate treatment that does
not occur in the Waiting Period treatment. Therefore, the discount factor in the

Immediate treatment can be represented as D0(1)
D0(0) = Sβδ. We obtain an estimate

of S as the ratio of the Immediate discount factor to the Waiting Period discount
factor.

Participants in the Commit treatment maximize equation (3). At t = 0, sub-
jects allocate tasks between t = 1 and t = 2. Because choices are made in the ab-

sence of a waiting period, the discount factor can be represented as D0(2)
D0(1) ≈ Sδ.

44

In turn, we obtain an estimate of β as the ratio of the Immediate discount factor
to the Commit discount factor.

Call z1 tasks allocated to Work Period 1 and z2 tasks allocated to Work Period
2 and r the the interest rate by which undone tasks grow. The general convex
intertemporal allocation decision in our study is

(B1) min
z1,z2

U(z1, z2) = zγ1 + δT z
γ
2 s.t. z1 +

z2

1 + r
= 40 .

γ is the instantaneous disutility of effort parameter, and δT is a treatment-specific
discount factor (constructed linearly using indicator variables), which we map
to the parameters of interest with the across-treatment comparisons mentioned
above.

We make two additional adjustments to allow for more flexibility in our model of
effort cost. First, we add background parameters ω1 and ω2 to the tasks required
in each period to represent other effort that might need to be expended during
those time periods. Second, we allow for the possibility of less-than complete
recovery after Work Period 1 with another background effort parameter, ω3, that
enters as a coefficient on z1 in the Work Period 2 effort level. The utility function
is thus

(B2) U(z1, z2) = (z1 + ω1)γ + δT (z2 + ω2 + ω3z1)γ .

44This is an approximation. Since the variance in forecasts of future utility is increasing in their time
horizon, the as-if discounting that occurs in the Commit treatment is between one and two periods in
the future, whereas in the Immediate treatment, it is between one period in the future and the present,
which is subject to no uncertainty. Assuming a linear increase in simulation variance and time period,
which leads to a hyperbolic as-if discount factor, the S in Commit is slightly closer to one than the S in
Immediate. Our estimate of β is thus a lower bound on the quasi-hyperbolic discount factor.
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We use the solution to the utility maximization problem to set up a maximum-
likelihood estimation. The supply of tasks in Work Period 1 is

(B3) z∗1 =
40A(1 + r) + ω2A− ω1

1 +A(1 + r)− ω3A
,

where A =
(
δT (1 + r−ω3)

) 1
γ−1 . Individuals, i, solve this problem for each choice,

j, and select the nearest available option subject to a standard normal error term,
εi,j , such that

(B4) z1,(i,j) −
40At(1 + rj) + ω2Aj − ω1

1 +Aj(1 + rj)− ω3Aj
+ εi,j = 0 ,

where z1,(i,j) is our observed choice for period 1 tasks by person i on task j. The
likelihood associated with that observation is

(B5) φ

(
z1,(i,j) −

40Aj(1 + rj) + ω2Aj − ω1

1 +Aj(1 + rj)− ω3Aj

)

When subjects select corner solutions from the convex choice sets, the convex
first order conditions may poorly approximate choices. Therefore, we assume
censoring at each corner as in a Tobit model. If z1,(i,j) = 0, then we assume that

(B6) εi,j >
40Aj(1 + rj) + ω2Aj − ω1

1 +Aj(1 + rj)− ω3Aj
,

and the likelihood contribution is

(B7) Φ

(
− 40Aj(1 + rj) + ω2Aj − ω1

1 +Aj(1 + rj)− ω3Aj

)
.

If z1,(i,j) = 40, then we assume that

(B8) εi,j <
40Aj(1 + rj) + ω2Aj − ω1

1 +Aj(1 + rj)− ω3Aj
− 40 ,

and the likelihood contribution is

(B9) Φ

(
40Aj(1 + rj) + ω2Aj − ω1

1 +Aj(1 + rj)− ω3Aj
− 40

)
.

In our two binary choice tasks, subjects simply select the smaller value between
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(40+ω1)γ and δT (40(1+r)+ω2)γ . We make the standard Probit model assumption
that the difference between the two utilities is subject to a normal distribution.
Thus the probability of observing all work in the first period is

(B10) Pr(z1,(i,j) = 40) = Pr((40 + ω1)γ − δT (40(1 + rj) + ω2)γ + εi,j < 0) =

Φ(δT (40(1 + rj) + ω2)γ − (40 + ω1)γ)

and the probability of observing all work in the second period is

(B11) Pr(z1 = 0) = Pr((40 + ω1)γ − δT (40(1 + rt) + ω2)γ + εi,j > 0) =

Φ((40 + ω1)γ − δT (40(1 + rj) + ω2)γ).

These probabilities are used to construct the likelihood function. In the estima-
tion, we impose the restrictions that γ > 0 and that ω1, ω2, ω3 > 0 to prevent
degenerate results (by replacing these parameters with exp() of themselves). With
these constraints in place, we also specify the “nonrtolerance” option in order to
permit convergence when the parameter vector and/or likelihood become stable
near the boundary of the restriction, rather than search for a global maximum.
One consequence of this is that minor differences in the standard errors of the
estimated parameters may emerge across machines using different numbers of
processors, operating systems, and versions of Stata, as documented by Stat-
aCorp.45 Please see our replication package Imas, Kuhn and Mironova (2021)
for more detail. We initialize the estimation at values of 0.95 for all treatment-
specific discount factors, ln(γ) at 0.25 (γ ≈ 1.28), and all ω values at ln(ω) = −1
(ω ≈ 0.37).

We estimate γ = 1.255 (S.E. = 0.047), indicating increasing marginal disutility
of performing the counting task. There is no evidence on any background effort
level in Work Period 1 (ω1 = 0), but there is evidence of background effort in
Work Period 2 (ω2 = 4.711, S.E. = 2.455). Additionally there is some evidence of
effort spillover across period (ω3 = 0.253, S.E. = 0.017). We estimate treatment-
specific discount factors of DI = 0.968 (S.E. = 0.071), DWP = 1.151 (S.E. =
0.113), DC = 1.062 (S.E. = 0.087), and DDC = 0.878 (S.E. = 0.061). The very
short time horizon means that we should expect very little discounting. Indeed,
discount factors DI , DW , DC do not significantly differ from one (p = 0.65, 0.18
and 0.48, respectively); only the Delay Control estimate DDC does (p = 0.05).
Estimates of S and β are discussed in the text.

C. Tables

45https://www.stata.com/support/faqs/windows/results-in-different-versions/

https://www.stata.com/support/faqs/windows/results-in-different-versions/
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Table C1—Effects of Treatments on Doing All Tasks in Work Period 1 on Convex Task

Allocations, Probit Models, Online Study

Sample: Convex Choices Binary Choices

Interest rate: 50% 25% 12.5% 0% All -12.5% 2.5%

(1) (2) (3) (4) (5) (6) (7)

Waiting Period 0.284 0.346 0.346 0.155 0.274 -0.133 -0.008
(0.142) (0.134) (0.134) (0.117) (0.111) (0.126) (0.058)

Commit 0.000 0.031 0.062 -0.000 0.023 -0.062 0.040
(0.125) (0.125) (0.125) (0.122) (0.114) (0.123) (0.084)

Delay Control 0.002 0.031 0.031 -0.115 -0.011 -0.269 -0.085
(0.127) (0.127) (0.127) (0.133) (0.112) (0.123) (0.032)

Constant 0.531 0.469 0.469 0.375 0.461 0.562 0.938
(0.089) (0.089) (0.089) (0.086) (0.082) (0.088) (0.043)

χ2
1(H0 : WP = C) 4.20 5.18 4.20 1.53 4.84 0.30 0.43
χ2

1(H0 : WP = DC) 4.03 5.04 5.04 4.22 6.50 1.02 1.26
χ2

1(H0 : C = DC) 0.00 0.00 0.06 0.82 0.10 2.54 1.86

N 122 122 122 122 488 122 122

Note: Coefficients are the marginal effects of each treatment on the probability a subject allocates all
tasks to WP1. In columns (1)-(4) and (6)-(7), robust standard errors are reported in parentheses below
each estimate. In column (5), standard errors clustered at the individual level are reported in parentheses
below each estimate. The hypothesis tests report the chi-square statistics associated with tests of equality
between the treatment effects, where WP stands for Waiting Period, C stands for Commit and DC stands
for Delay Control.
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Table C2—Effect of Treatment on Doing All Tasks in Work Period 1 on Convex Task Allo-

cations, Probit Models, Lab Study

Sample: Convex Choices Binary Choices

Interest rate: 50% 25% 12.5% 0% All -12.5% 2.5%

(1) (2) (3) (4) (5) (6) (7)

Waiting Period 0.259 0.338 0.250 0.171 0.258 -0.105 -0.029†

(0.098) (0.070) (0.093) (0.097) (0.044) (0.086)
Constant 0.342 0.237 0.316 0.316 0.303 0.763 1.000†

(0.078) (0.069) (0.076) (0.076) (0.037) (0.069)

N 72 72 72 72 288 72 72

Note: Coefficients are the marginal effects of each treatment on the probability a subject allocates all
tasks to WP1. In columns (1)-(4) and (6)-(7), robust standard errors are reported in parentheses below
each estimate. In column (5), standard errors clustered at the individual level are reported in parentheses
below each estimate.
† : All subjects in the Immediate treatment allocated 40 tasks to WP1 on this budget, versus 97.1% in
Waiting Period. The marginal effect estimation fails due to a lack of variation. We instead place the
IT mean in the constant row, and the difference in means between WPT and IT in the Waiting Period
coefficient row.

Table C3—Effect of Treatment on Convex Task Allocations to Work Period 1, Lab & Field

Studies

Interest rate: 50% 25% 12.5% 0% All

(1) (2) (3) (4) (5)

Waiting Period 4.936 5.635 4.796 3.047 4.604
(1.362) (1.442) (1.464) (1.824) (1.339)

Constant 31.257 30.171 30.171 28.114 29.929
(1.125) (1.100) (1.084) (1.217) (1.014)

N 132 132 132 132 528

Note: All estimates from OLS models. In columns (1)-(4), bootstrapped standard errors from 1000
replications are reported in parentheses below each estimate, to adjust for non-normality of the error
distribution. Output is reproducible with a seed of 1. In column (5), standard errors clustered at the
individual level are reported in parentheses below each estimate.
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Table C4—Observable Balance across Treatments, DRC Study

Variable Immediate Waiting Period Difference

Female 0.41 0.42 -0.01
Age 30.90 30.59 0.31
Secondary education or beyond 0.79 0.77 0.02
Has children 0.69 0.75 -0.05
Employed 0.44 0.39 0.06
Unimportance of religion (1-4 scale) 3.52 3.55 -0.03
Distance from city center (1-3 scale) 1.57 1.61 -0.04
Feels safe at home (1-4 scale) 2.34 2.53 -0.20
Access to food (1-4 scale) 2.39 2.39 0.00
Access to clean water (1-4 scale) 2.40 2.29 0.11
Access to medical care (1-4 scale) 2.05 2.13 -0.08
Access to shelter (1-4 scale) 2.36 2.40 -0.04
Access to phone network (1-4 scale) 2.66 2.40 0.26
Life got better last year (1-5 scale) 3.04 3.14 -0.10
Expects life better next yr. (1-5 scale) 3.72 3.73 -0.01
Not afraid to take risks (1-4 scale) 3.03 3.12 -0.09
Feels in control of life (1-4 scale) 2.32 2.23 0.08
Worries about future (1-4 scale) 2.74 2.88 -0.14
Plans for next week (1-4 scale) 3.10 3.13 -0.04
Trusts others (1-4 scale) 2.38 2.55 -0.17
Close to community (1-4 scale) 2.94 3.05 -0.11
Property damage due to conflict 0.46 0.50 -0.04
Direct exposure to violence during war 0.38 0.30 0.08

Note: The “Feels safe at home” and “Access to phone network” differences have p < 0.10. None of the
other differences are statistically significant.
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Table C5—Impact of Waiting Period on Likelihood of Minimum-value Coupon Redemption,

Full Results

Model: OLS Probit

(1) (2)

Waiting Period -0.166 -0.243
(0.048) (0.082)

Food Access -0.020 -0.020
(0.044) (0.045)

Food Access X Waiting Period 0.013 0.013
(0.050) (0.066)

Distance from Store 0.037 0.037
(0.060) (0.058)

Distance from Store X Waiting Period -0.000 0.038
(0.069) (0.087)

Trust in Others -0.003 -0.003
(0.041) (0.039)

Trust in Others X Waiting Period 0.014 0.022
(0.048) (0.066)

Risk Tolerance -0.020 -0.020
(0.044) (0.042)

Risk Tolerance X Waiting Period 0.067 0.133
(0.050) (0.077)

Constant 0.250 0.250
(0.037) (0.038)

N 258 252

Note: Coefficients from Probit models are the marginal effects associated with switching from the Im-
mediate to Waiting Period treatment. Robust standard errors are reported in parentheses below each
estimate. Food access, trust in others and risk tolerance are all measured on 1-4 scales, and distance
from the store is measured on a 1-3 scale. All control variables are de-meaned. We lose six observations
with the addition of control variables due to incomplete survey responses.
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D. Sample Experiment Instructions

Both the online and laboratory studies were run using the Qualtrics platform.
All .qsf files are available in Imas, Kuhn and Mironova (2021) in the AEA Data
and Code Repository.












