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We provide a formal analysis of the results reported in Section III.C of the main
paper. After introducing several preliminary lemmas, we characterize the equilibrium
described in Section III.C as an equilibrium that maximizes the social welfare among
all equilibria of the communication game provided that the incentive compatibility
(IC) is satisfied. Finally, we delineate the parameter values for which the IC is indeed
satisfied.

1 Preliminary lemmas

Lemmas A1–A5 are from the proof of Proposition 2 in the main paper.

Lemma A1 Suppose that ai = (a`i , a
n
i , a

h
i ) is agent i’s equilibrium allocation under

one pair of posterior beliefs and ai = (a`i , a
n
i , a

h
i ) is that under another. If ani < ani ,

then E(ai|µi)− E(ai|µi) ≤ ani − ani for any µi, with equality if and only if a`i and ahi
are interior solutions when µ`i > 0 and µhi > 0, respectively.

Lemma A2 Let a1 = (a`1, a
n
1 , a

h
1) and a2 = (a`2, a

n
2 , a

h
2) be the equilibrium under

posterior (µ1, µ2) such that Eb(µ1) < Eb(µ2). Then,
(a) E(a1|µ1) ≥ an1 + Eb(µ1) with strict inequality if µ`1 > 0 and an1 < |`|.
(b) E(a2|µ2) ≤ an2 + Eb(µ2) with strict inequality if µh2 > 0 and an2 + h > 1.
(c) E(a1|µ1)− an1 = E(a2|µ2)− an2 .

Lemma A3 Let âti = 1 + t− E(a−i|µ−i), i.e., the unconstrained optimal allocation
of agent i of t-type relative to an allocation vector a−i ∈ [0, 1]3 of the other agent
with a posterior belief µ−i. Then, agent i’s utility from âti is the same regardless of
his type and decreases by y2 if his allocation is y away from âti.

Lemma A4 If Eb(µ1) < X < Eb(µ2) for some X < h + `, then the equilibrium
value of ah2 is a noninterior solution under the posterior (µ1, µ2).
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Lemma A5 If agent i of a type t ∈ {`, h} always gets his unconstrained optimum
after sending mik (even if irrelevant) but weakly prefers sending mik′ even if he some-
times gets less than the unconstrained optimum after mik′ , then agent i of n-type
strictly prefers sending mik′ to mik.

We introduce a few more lemmas below.

Lemma B1 If Eb(µ1) < Eb(µ̃1) and supp(µ1) = supp(µ̃1) 6= {h, n, `}, then an1 is
strictly higher in the continuation equilibrium after (µ̃1, µ2) than after (µ1, µ2) for
any µ2.

Proof. It is clear when Eb(µ1) < Eb(µ2) < Eb(µ̃1) from Lemma 2 of the main
paper. When Eb(µ1) < Eb(µ̃1) ≤ Eb(µ2) or Eb(µ2) ≤ Eb(µ1) < Eb(µ̃1), if an1 is
weakly lower after (µ̃1, µ2) than after (µ1, µ2) then E(a1|µ̃1) < E(a1|µ1) ⇔ 1 −
E(a1|µ̃1) > 1 − E(a1|µ1) implying that an2 , thus E(a2|µ2), is strictly lower after
(µ1, µ2) than after (µ̃1, µ2), contradicting an1 being weakly higher after (µ̃1, µ2) than
after (µ1, µ2).

Lemma B2 If Eb(µ1) < Eb(µ2) with µh1 = 0 and µ`2 = 0, then an1 = 0 and an2 = 1 in
the continuation equilibrium after (µ1, µ2).

Proof. If an1 > 0, then either E(a1) < an1 or E(a2) > an2 so that an1 = 1− E(a2) ≤
1−an2 = E(a1) ≤ an1 with at least one strict inequality, a contradiction. An analogous
contradiction obtains when an2 < 0 as well.

Lemma B3 Suppose an2 is higher in the continuation equilibrium after (µ1, µ2) than
after (µ̃1, µ2) where max{Eb(µ1),Eb(µ̃1)} ≤ Eb(µ2). Agent 1’s utility is the same
for n- and h-type and is higher after (µ1, µ2) than after (µ̃1, µ2), strictly if Eb(µ1) <
Eb(µ2) and µh2 > 0.

Proof. By Lemmas 1 and 2 of the main paper, both after (µ1, µ2) and after
(µ̃1, µ2), agents 1-n and 1-h obtain unconstrained optimum (hence, identical utility)
conditional on a2 such that a`2 = an2 + ` and ah2 = min{1, an2 + h}. Thus, their utility
is higher when a2 has a lower variance. The variance of a2 is the same at (µ1, µ2)
and at (µ̃1, µ2) if µh2 = 0 or an2 + h ≤ 1 at (µ1, µ2); but is lower at (µ1, µ2) otherwise,
which is the case when Eb(µ1) < Eb(µ2) and µh2 > 0.

At this point, we introduce some terminology to facilitate exposition. Since player
i may send multiple messages that generate the same posterior µik, we say “any
(some) mik” to mean any (some) message that generate the posterior µik when needed.
Moreover, since multiple messages may have the same expected bias, we say “any
(some) message with Eb(µik).” For brevity, we say “agent i-t” to mean agent i ∈ {1, 2}
of type t ∈ {h, n, `}. By “ati after (m1j,m2k)” we refer to agent i-t’s allocation (to
area A) in the continuation equilibrium following the message pair (m1j,m2k).

The following lemmas on comparing messages for agents prove useful.

Lemma B4 Fix m2κ with µh2κ > 0. In the continuation equilibrium (a1, a2) after
(m1k,m2κ) where Eb(µ1k) < Eb(µ2κ), the utility of agent 1-n is constant so long as
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an2 ≤ 1− h and strictly increases in an2 ≥ 1− h. The utility of agent 1-` is the same
as that of agent 1-n if an1 + ` ≥ 0 and is lower by (an1 + `)2 if an1 + ` < 0.

Proof. The first part is because agent 2’s allocation is of a lower variance for
higher an2 ≥ 1− h. The second part is clear from Lemma A3.

Lemma B5 Let (a1, a2) be the continuation equilibrium after (mik,m−iκ) and let
(ã1, ã2) be that after (m1k′ ,m−iκ). The net benefit of agent i from sending mik′

rather than mik (conditional on m−iκ) is lower for `-type (resp. h-type) than for n-
type if and only if ãni + ` ≤ min{0, ani + `} (resp. ãni + h ≥ max{1, ani + h}), strictly
when the inequality is strict; thus it is no lower if ã`i (ãhi ) is interior.

Proof. Clear from Lemma A3 as ani and ãni are interior.

Lemma B6 Suppose a message mik is optimal for agents i-n and i-` and both of
them derive unconstrained optimum after (mik,m−ik′) for all m−ik′ ∈M−i. If another
message mij is optimal for agent i-`, then it is also optimal for i-n and both of them
derive unconstrained optimum after (mij,m−ik′) for all m−ik′ ∈M−i.

Proof. Agents i-n and i-` derive identical equilibrium payoffs from sending mik, as
agent i-` does from sending mij. If agent i-` did not get unconstrained optimum from
mij sometimes, agent i-n derives a higher overall payoff from mij (as he always gets
the unconstrained optimum) which thus is higher than that from mik, contradicting
optimality of mik. Thus, i-` always gets unconstrained optimum from mij, hence the
same overall payoff as agent i-n who should, therefore, find mij optimal.

2 Characterization of non-babbling equilibrium

For an arbitrary equilibrium of the communication game, letMi = {mi1,mi2, · · · ,miKi
}

be the set of Ki messages sent by agent i with associated posteriors µi1, µi2, · · · , µiKi

for i ∈ {1, 2}, labelled in such a way that

Eb(µi1) ≤ Eb(µi2) ≤ · · · ≤ Eb(µiKi
) and Eb(µ11) ≤ Eb(µ21).

Since Eb(µ11) = Eb(µ0) implies the babbling equilibrium as shown in the proof of
Proposition 2, below we assume

(a0) Eb(µ11) < Eb(µ0) < Eb(µ1K1).

We start with the extreme possibility that Eb(µ11) = ` ⇔ µ`11 = 1. From Lemma
2, we have an2 = 1 and an1 + ` < 0 at (µ11, µ2κ) if Eb(µ2κ) > `. Consider any message
m1k used by agent 1-n so that µn1k > 0. Agents 1-` and 1-n get the ideal payoff of 0
from both m11 and m1k against any message m2κ with Eb(µ2κ) = ` (Lemmas 1 and
2 in the main paper).

If there is a message m2κ such that Eb(µ2κ) > ` and an2 < 1 at (µ1k, µ2κ), agent
1-`’s payoff would be lower than that of agent 1-n by a smaller margin at (m1k,m2κ)
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than at (m11,m2κ) by Lemma B4, thus would prefer m1k strictly to m11 given that
agent 1-n finds m1k optimal, which would contradict µ11 = `.

Thus, for every message m1k used by agent 1-n, we have an2 = 1 at (µ1k, µ2κ) if
Eb(µ2κ) > `. This implies that (i) µh1k = 0 for every message m1k used by agent 1-n
and (ii) µ`2κ = 0 for every message m2κ such that Eb(µ2κ) > `, so that µ21 = `. Then,
by applying the same reasoning to agent 2, we deduce that (i’) µh2k = 0 for every
message m2k used by agent 2-n and (ii’) µ`1κ = 0 for every message m1κ such that
Eb(µ1κ) > `.

This means that both agents fully separate among the three types. Then, agent
1-` would obtain his ideal allocation (1 + ` to A) when agent 2 is of `-type but an
allocation of 1 to A otherwise; by pretending to be h-type, instead, he would obtain
ideal allocation unless agent 2 is of h-type in which case the allocation is at most 1
to A. Thus, agent 1-` should pretend to be h-type, a contradiction.

The rest of the proof is on the case that Eb(µ11) > `, which we present in two
parts depending on whether

[0] there is a message m11 such that ah1 is interior (i.e., an1 + h ≤ 1) after (m11,m2k)
for all m2k ∈M2.

Note that this condition holds if µh11 > 0 by Lemmas 2–3.

Part 1: The case that [0] holds.

Fix a message m11 for which [0] holds. By Lemmas A4 and A5, agent 1-n strictly
prefers sending any m1k with Eb(µ1k) > Eb(µ21) and µh1k > 0 to sending m11; and
consequently, any m1k with Eb(µ1k) > Eb(µ21) and µn1k > 0, thus all m1k with
Eb(µ1k) > Eb(µ21). This implies µn11 = 0 and consequently, µ`11, µ

h
11 > 0 since ` <

Eb(µ11) < Eb(µ0). Thus, to find m11 optimal agent 1-` must benefit less than agent
1-n by sending m1k rather than m11 against at least one m2κ ∈M2. That is,

[1] for every message m1k with Eb(µ1k) > Eb(µ21), there is m2κ ∈ M2 such that
agent 1’s net benefit of sending m1k rather than m11 conditional on m2κ is strictly
lower for `-type than for n-type, where Eb(µ2κ) ≥ Eb(µ1k) by Lemma B5.

Fix any m1K1 and m2κ as per [1] and consider the continuation equilibrium (a1, a2)
after (m11,m2κ), where an1 < an2 by Lemma 3. Let (ã1, ã2) denote the equilibrium after
(m1K1 ,m2κ), where ãn1 < an1 < |`| by Lemma B5 and [1]. From (6) in the main paper,

0 < an1 − ãn1 = E(ã2|µ2κ)− E(a2|µ2κ) ≤ ãn2 − an2 = E(a1|µ11)− E(ã1|µ1K1)

where the second inequality is from Lemma A1 and consequently,

(a1) E(a1|µ11)− an1 ≥ E(ã1|µ1K1)− ãn1 ≥ Eb(µ1K1) > Eb(µ0).

At this point, we show that Eb(µ21) ≤ Eb(µ1k′) for all m1k′ 6= m11. With a view to
reaching a contradiction, suppose there is m1k′ 6= m11 such that Eb(µ11) ≤ Eb(µ1k′) <
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Eb(µ21) and thus, µn1k′ = 0 as well as µn11 = 0 by Lemma A5. Then, either µ11 = µ1k′

(in which case m11 and m1k′ may be identified as they induce the same continuation
equilibrium against every m2k) or Eb(µ11) < Eb(µ1k′). In the latter case, an2 is higher
in the continuation equilibrium after (m11,m2k) than in that after (m1k′ ,m2k) for
every m2k by Lemma B1, hence both agent 1-h and 1-n would strictly prefer sending
m11 to m1k′ by Lemma B3. As this would contradict Eb(µ11) < Eb(µ1k′), we have
established Eb(µ21) ≤ Eb(µ1k′) for all m1k′ 6= m11.

Let (ă1, ă2) denote the continuation equilibrium after (m11,m21). If

[2] agent 2’s net benefit of sending m2κ rather than m21 conditional on m11 is weakly
larger for h-type than for n-type,

then an2 ≤ ăn2 must hold by Lemma B5. From (6) and Lemma A1, we deduce 0 ≤
ăn2 − an2 = E(a1|µ11)− E(ă1|µ11) ≤ an1 − ăn1 = E(ă2|µ21)− E(a2|µ2κ) and thus,

(a2) E(a2|µ2κ)− an2 ≤ E(ă2|µ21)− ăn2 ≤ Eb(µ21) ≤ Eb(µ0).

But, (a1) and (a2) are incompatible by Lemma A2-(c).
We now show that [2] prevails when [0] holds, which establishes that (a0) is un-

viable if [0] holds. Since agent 2-n gets the same payoff as 2-` from m2κ but weakly
higher payoff than 2-` from m21, and µn21 = 0 would imply µ`21 > 0, it follows that
agent 2-n weakly prefers m21 to m2κ. If

[2a] agent 2-h’s net benefit of sending m2κ rather than m21 is no higher that that of
agent 2-n conditional on all m1k′ such that Eb(µ21) ≤ Eb(µ1k′) ≤ Eb(µ1K1),

therefore, negation of [2] would dictate that agent 2-h’s overall utility is strictly lower
with m2κ than with m21. As this would contradict µh2κ > 0, which is implied by
Eb(µ2κ) > Eb(µ0), this verifies [2] provided that [2a] holds.

Thus, suppose [2a] fails, that is, agent 2’s net benefit of sending m2κ rather
than m21 is strictly larger for h-type than for n-type conditional on some m1k with
Eb(µ21) ≤ Eb(µ1k). By Lemmas 1 and 2 of the main paper, this may happen only if

[3] Eb(µ21) = Eb(µ1k) for some k 6= 1 and µh21 = 0 and an2 + h > 1 at the interior
solution after (m1k,m21) by a larger margin than that after (m1k,m2κ).

If an1 + h ≤ 1 after (m1k,m2k′) for all k′, then µn1k = 0 = µn11 by Lemma A5
and thus, either µ1k = µ11 in which case m1k and m11 may be identified without
affecting equilibrium conditions,1 or Eb(µ11) < Eb(µ1k) in which case agent 1 of
both h and n-type would strictly prefer m11 to µ1k by Lemma B3 because an2 is
higher at (m11,m2k′) than at (m1k,m2k′), a contradiction. On the other hand, if
an1 + h > 1 after (µ1k, µ2k′) for some k′, as this is possible only if µh1k = 0 and
Eb(µ1k) = Eb(µ2k′) = Eb(µ21), we may relabel m2k′ as m21 and repeat the process of

1because both messages generate interior ati for all t against any m2k′ with the same bias, and
generate the unique continuation equilibrium against any other m2k′ .
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verifying [2]. Eventually, either [3] does not hold at some stage, thus verifying [2], or
there is a cycle µ21, µ1k, µ2k′ , µ1k′′ , · · · , µ21, all of which assign probability 0 to ti = h
and have the same bias, hence they are all identical posteriors.

In the latter case, with a view to reach a contradiction, suppose [2] fails, i.e.,

[2’] an2 + h− 1 is positive and strictly larger at (m11,m2κ) than at (m11,m21).

First, suppose µn21 6= 1. For [3], letting (a1, a2) and (â1, â2) denote the interior solution
at (m1k,m21) and the noninterior solution at (m1k,m2κ), resp., since both an1 + ` > 0
and ân1 + ` > 0 we have ân1 − an1 = E(â1|µ1k) − E(a1|µ1k) = an2 − ân2 = E(a2|µ21) −
E(â2|µ2κ) > 0 where the last equality stems from ân1 − an1 = E(a2|µ21) − E(â2|µ2κ).
Solving this equation system we derive

(a3) an2 − ân2 = an2 − 1 +
`(µ` − µ`2κ)

µh2κ
> 0.

For [2’], again letting (a1, a2) and (â1, â2) denote the solution at (m11,m21) and the
noninterior solution at (m11,m2κ), resp., we have E(â1|µ11)−E(a1|µ11) = an2− ân2 < 0
and E(a2|µ21)− E(â2|µ2κ) = ân1 − an1 < 0. From this equation system we derive

an2 − ân2 =
(1− µ`11)[µh2κ(an2 − 1) + `(µ` − µ`2κ)]

µ`11 + µh2κ(1− µ`11)
< 0

when Eb(µ11) < Eb(µ21), which is incompatible with (a3) because an2 is higher at
(m11,m21) than at (m1k,m21). If Eb(µ11) = Eb(µ21), we would have µ`11 > µ`21 =
µ`1k since µn11 = µh21 = µh1k = 0 (recall µ`11 < 1) and agent 1-` derives identical
(unconstrained optimum) utility from m11 and m1k against any m2k′ with Eb(µ2k′) =
Eb(µ11), but a higher utility from m1k than from m11 against every m2k′ such that
Eb(µ2k′) > Eb(µ11) and an1 + ` < 0 at (m1k,m2k′) by Lemma A5 because an1 is lower
at (m1k,m2k′) than at (m11,m2k′). If such a m2k′ exists, agent 1-` strictly prefers m1k

to m11, a contradiction. Otherwise, agent 1-` derives the same utility as agent 1-n
from sending m11 and also from sending m1k, contradicting m11 being suboptimal for
agent 1-n. This completes verifying [2] when µn21 6= 1.

Now suppose µn21 = 1. For any m1K with Eb(µ1K) > 0, whence µh1K > 0, by [1]
agent 1-` benefits strictly less than agent 1-n by sending m1K instead of m11 against
some m2k′ , termed “moderator (message)”, for which an1 should be lower than −`
at (m11,m2k′) and decrease at (m1K ,m2k′). It is routinely verified that the solution
value of an1 decreases as such only if

(a4) µh1K ≤ µ̄h1K =
`µ`2k′(1− µh11 − µ`1K) + hµh11(µ

h
2k′ + µ`1K − µh2k′µ`1K)

h(1− µh11(1− µh2k′))
,

thus every equilibrium posterior µ1K with Eb(µ1K) > 0 must satisfy (a4).
However, since µ0 must be in the interior of the convex hull spanned by agent 1’s

equilibrium posteriors, there exists an equilibrium posterior µ1K with Eb(µ1K) ≥ 0,
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on the opposite side from µ1k = (0, 1, 0) of the hyperplane spanned by µ0 and µ11 in
the posterior simplex, which is a condition characterized as

µh1K ≥ µh
1K

=
µh0(1− µh11)− µ`0µh11 − (µh0 − µh11)µ`1K

1− µ`0 − µh11
=

µh0(1− 2µh11 − µ`1K) + µh11µ
`
1K

1− µh0 − µh11
.

Consequently,

µh
1K
−µ̄h1K =

[
h(µh0 − 2µh0µ

h
11)− h(1− 2µh0)µh11µ

h
2k′)− `(1− µh0 − µh11)µ`2k′

]
(1− µh11 − µ`1K)

h(1− µh0 − µh11)(1− µh11(1− µh2k′))
.

Note that the expression in the bracket is positive if µ`2k′ ≥ µh2k′ because it increases

in µ`2k′ and decreases in µh11 and obtains
(h+`)µh0 (h−`µh2k′ )

h−` > 0 at µ`2k′ = µh2k′ and µh11 =
−`
h−` (Eb(µ11) ≤ 0 implies µh11 ≤ −`

h−`). Since Eb(µ11) < Eb(µ1K) implies µh11 +µ`1K < 1

and µh11 <
µh0

µh0+µ
`
0

= 1/2 implies µh11 + µh0 < 1, it follows that µh
1K

> µ̄h1K if µ`2k′ ≥ µh2k′ .

Therefore, for any message m1K with Eb(µ1K) > 0, the moderator m2k′ must have
µ`2k′ < µh2k′ . Moreover, no equilibrium posterior µ1K 6∈ {µ11, µ1k} with Eb(µ1K) = 0
exists because any such posterior would have µn1K = 0 by Lemma A5 and thus would
be dominated by m11 for agent 1-h by Lemma B1.

Consequently, since µ0 is the mean of posteriors, there must be a message, say
m2j, such that Eb(µ2j) ≥ 0 and µ`2j > µh2j, and for every µ1K with Eb(µ1K) > 0,

[1’] agent 1’s net benefit of sending m1K rather than m11 conditional on m2j is no
lower for `-type than for n-type.

Suppose that agent 2-n derives a strictly higher utility with m21 than m2j against
m11, i.e., an1 is lower at (m11,m21) than at (m11,m2j). Since E(a1|µ11) = an1 + µh11h−
(1−µh11)an1 , as µ11 is changed to µ1K the negative effect of (µh1K−µh11)h is the same but
the positive effect of (µ`1K−µ`11)an1 is larger when an1 is larger, i.e., at (m11,m2j). This
means that an1 remains lower at (m11,m21) than at (m11,m2j) when µ11 is changed
to µ1K with Eb(µ1K) > 0, thus agent 2-n’s utility remains higher with m21 than m2j

against m1K . Since his utility is same at 0 with both m21 and m2j against m1k, the
message m2j would be suboptimal for agent 2-n. As this is impossible as explained
below, it must be the case that he derives no lower utility with m2j than m21 against
m11. This condition is calculated to be

µh2j >
−`
h

(1− µh11
µh11

)
µ`2j >

−`
h

(1− µh11
µh11

)
µ`2j

∣∣∣
µh11=−`/(h−`)

= µ`2j,

contradicting µ`2j > µh2j.
Finally, if m2j is suboptimal for 2-n so that supp(µ2j) = {h, `}, then supp(µ2κ) =

{h, `} is not viable because that would imply m2κ being suboptimal for agent 2-h by
Lemma B1, nor is supp(µ2κ) 3 n because that would imply 2-`’s utility from m2j being
no lower than 2-n’s utility from m2κ by Lemma A5, contradicting suboptimality of m2j
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for 2-n, and nor is supp(µ2j) = {h} because that would imply an1 = 0 at (m11,m2κ),
violating [1].

Part 2: The case that [0] fails.
Since µh11 = 0 and Eb(µ11) = Eb(µ21) by Lemmas 1 and 2 (of the main paper)

in this case, we may assume that [0] fails for both agents as they can be relabelled
otherwise, so that

[0’] µ11 = µ21 and for each i, µhi1 = 0 and ani + h > 1 at the interior solution after
(mi1,m−ik) for some m−ik with Eb(µ−ik) = Eb(µi1) ≤ 0.

This means that µi1 is generated by multiple equilibrium messages for each i. In
addition, no other equilibrium posterior µik 6= µi1 has the same bias as Eb(µi1)
because µhik > 0 would ensue if it did, confirming [0].

Recall ` < Eb(µ11) = Eb(µ21). Suppose an equilibrium posterior say for agent
2, µ2k 6= µ21, has µ`2k = 0. Since Eb(µ21) < Eb(µ2k), agent 2-h derives no higher
utility than n-type from sending m2k conditional on every m1k, and h2 less when
Eb(µ1k) = Eb(µ11) by Lemmas A3 and B2; but by sending m21, he derives the same
utility as n-type when Eb(µ1k) > Eb(µ11) and less by an amount smaller than h2

when Eb(µ1k) = Eb(µ11) by Lemma 1 of the main paper. Since n-type derives no
lower utility from sending m21 than m2k (because µn21 > 0), this means that h-type
strictly prefers m21 to m2k, a contradiction unless µn2k = 1, leading to the following
observation.

[4] µ`ik > 0 unless µnik = 1 for all equilibrium posteriors µik 6= µi1 for each i.

With a view to reaching a contradiction, suppose µ`i1 > 0. If ani + ` ≥ 0 at
(mi1,m−ik) for all m−ik ∈ M−i for both i = 1, 2, (which implicitly assumes µnik 6= 1
for all µik), then both agents i-` and i-n derive unconstrained optimum from mi1

against all messages, hence so should both agents from all other messages mik as well
due to Lemma B6 since µ`ik > 0 by [4]. Then, agent i-n and i-` derive higher utility
from mi1 than from mik 6= mi1 against all m−ik 6= m−i1 and the same utility against
m−i1, contradicting [4].

Therefore, for some agent, say 1, an1 + ` < 0 at (m11,m2k) for some m2k 6= m21.
If µh2k = 0 then E(a2|µ2k) = an2 + Eb(µ2k) at (m11,m2k), thus an2 is higher and an1 is
lower at (m11,m2k′) for any m2k′ with Eb(µ2k′) > Eb(µ2k). Hence, we may assume
that µh2k > 0. Since an1 + ` ≥ 0 at any interior solution after (m11,m21), it follows
that the net benefit of agent 2 from sending m21 rather than m2k is strictly higher for
h-type than for n-type against m11; moreover, it is weakly higher for h-type against
all messages m1k 6= m11. Since n-type weakly prefers m21 to m2k, we have reached a
contradiction to µh2k > 0 as desired.

This leaves us to examine the case that µni1 = 1, whence Eb(µi1) = 0 and µhik > 0
(as well as µ`ik > 0 by [4]) for all k 6= 1. A key step for this case is to establish that

[5] for each i = 1, 2, {µi1, µiKi
} is the set of equilibrium posteriors.
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Suppose to the contrary that there are more posteriors for, say agent 1, and let
µ1k denote the one with the smallest bias, so that 0 = Eb(µ11) < Eb(µ1k) ≤ ... ≤
Eb(µ1K1) where the first strict inequality is implied by negation of [0]. We may also
assume that Eb(µ2K2) ≤ Eb(µ1K1) because if agent 2 had only two posteriors and
Eb(µ2K2) > Eb(µ1K1) then since agent 1-` derives the same utility of 0 from every
m1k with Eb(µ1k) > 0 against m21, he (thus, agent 1 of all types) must derive the same
utility against µ2K2 as well, which means the same continuation equilibrium (a1, a2)
at every (m1k,m2K2) with Eb(µ1k) > 0; but this would imply identical Eb(µ1k) if
an1 +` ≥ 0 or identical values of µh1kh−µ`1kan1 otherwise, neither of which is compatible
with agent 1-h deriving the same utility from all such m1k against m21 (which must
be the case given µh1k > 0) unless µ1k are all identical (because an1 = 1 + `µ`1k/µ

h
1k

at (m1k,m21)).
Since both agents 1-n and 1-` obtain unconstrained optimum from m1K1 against all

m2k′ , the net benefit of agent 1 from sending m1K1 rather than m1k is lower for h-type
than for both n- and `-type against all m2k′ such that Eb(µ1k) ≤ Eb(µ2k′) ≤ Eb(µ1K1).
If µn1k = 0 = µn1K1

, the net benefit is strictly lower for h-type against m2k′ such that
Eb(µ2k′) < Eb(µ1k) by Lemma B1, thus both n- and `-type would strictly prefer m1K1

to m1k, contradicting µ`1k > 0. Hence, either µn1k > 0 or µn1K1
> 0 must hold.

If m1K1 is optimal for agent 1-n (implied by µn1K1
> 0), Lemma B6 dictates

that both agents 1-n and 1-` derive unconstrained optimum from every message
m1k 6= m11 and find them optimal. However, m1k cannot be optimal for agent 1-
n as it is dominated by m11 due to Lemma B7 below, unless there is m2j such that
Eb(µ11) < Eb(µ2j) < Eb(µ1k) and against which agent 1-n derives a higher utility
with m1k than with m11.

Lemma B7 Consider µ with µn = 1 and 0 = Eb(µ) < Eb(µ̃) ≤ Eb(µ2). Let (a1, a2)
be the noninterior solution at (µ1, µ2) = (µ, µ2) and let (ã1, ã2) be the solution at
(µ1, µ2) = (µ̃, µ2). Then, an2 > ãn2 .

Proof. Given µh2 > 0 we have an1 = 1−E(a2|µ2) so that an2 = 1− an1 = E(a2|µ2) >
1−h. If ãh2 is an interior solution, i.e, ãn2+h ≤ 1, then an2 > ãn2 . Otherwise, i.e., ãn2+h >
1, then ãn1 = 1−E(ã2|µ2). For an2 ≤ ãn2 we would need E(a1|µ) = an1 ≥ E(ã1|µ̃) > ãn1
where the last inequality stems from Eb(µ̃) > 0, so that E(a1|µ)−E(ã1|µ̃) < an1 − ãn1 ;
however, an2 ≤ ãn2 implies E(ã2|µ2) − E(a2|µ2) ≤ ãn2 − an2 by Lemma A2 so that
an1 − ãn1 = E(ã2|µ2)− E(a2|µ2) ≤ ãn2 − an2 = E(a1|µ)− E(ã1|µ̃), a contradiction.

Thus, assume that m1k is optimal for agent 1-n and there are messages for agent
2, denoted by m2j, such that 0 = Eb(µ11) < Eb(µ2j) < Eb(µ1k). We may also
suppose that Eb(µ2K2) < Eb(µ1K1) because if Eb(µ2K2) = Eb(µ1K1) we would have
encountered a contradiction by relabelling the agents. Moreover, m2j is suboptimal
for n-type (thus, µn2j = 0) by Lemma B7. If µn2k′ = 0 for some message m2k′ with
Eb(µ2j) < Eb(µ2k′), then the net benefit of sending m2j rather than m2k′ would be
strictly higher for agent 2-h than for 2-` by Lemma B1, contradicting both agents
sending both messages. Therefore, we deduce that µn2k′ > 0 if Eb(µ2j) < Eb(µ2k′) ≤

9



Eb(µ2K2). Consequently, if µn1K1
> 0 then agent 2-n would derive a higher utility with

m21 than with m2K2 against any m1k′ 6= m11 with Eb(µ1k′) ≤ Eb(µ2K2) because a1 is
interior at (µ1k′ , µ2K2) by Lemma B6, and against any m1k′ with Eb(µ1k′) > Eb(µ2K2)
because an1 is lower (an2 is higher) after (m21,m1k′) by Lemma B7, contradicting µn2K2

>
0. Thus, µn1K1

= 0 must hold.
Then, agent 2 of `-type does equally well as n-type with m2K2 (thus better than

h-type) against all m1k′′ such that Eb(µ2j) < Eb(µ1k′′) ≤ Eb(µ2K2), whereas h-type
does better than `-type with m2j against all such m1k′′ ’s. Against m11, both `-type
and n-type obtain unconstrained optimum, while h-type doesn’t but the margin is
smaller with m2j than m2K2 .

Against the messagem1K1 (unique because µn1K1 = 0), either E(a2|µ2j) ≤ E(a2|µ2K2)
or E(a2|µ2j) > E(a2|µ2K2). If the former, agent 2 of h-type does better with m2j than
with m2K2 relative to `-type (since an2 is lower with m2j), contradicting µh2K2

> 0.
In the latter case, E(a2|µ2j) > E(a2|µ2K2) against m1K1 requires that an2 + ` < 0

at the noninterior solution following (m1K1 ,m2j), which is calculated as

(1− µh1K1
)(hµh2j − `)

1− (1− µh1K1
)µh2j

+ ` =
(1− µh1K1

)(hµh2j − `(1 + µh2j)) + `

1− (1− µh1K1
)µh2j

< 0

(a5) ⇐⇒ µh1K1
> µh

1K1
=

(h− `)µh2j
(h− `)µh2j − `

>
(h− `)µh2j

(h− `)µh2j − `

∣∣∣
µh2j=

−`
h−`

=
1

2

where the last inequality follows because Eb(µ2j) = µh2jh+(1−µh2j)` > 0 ⇔ µh2j >
−`
h−`

and µh
1K1

increases in µ2j. Thus, there must exist a message, say m1K , such that

Eb(µ1k) ≤ Eb(µ1K) < Eb(m1K1) and µh1K < µ`1K because µ0 is the mean of all
posteriors.

By the standard argument, agent 1-h does strictly better withm1K than withm1K1

relative to agent 1-` against all m2k′ between them (i.e., m1K and m1K1); and so does
he against m21 because it is routinely verified that an1 + h is lower in the noninterior

solution after (m1K ,m21) than that after (m1K1 ,m21) if and only if µh1K1
>

µh1K
µh1K+µ`1K

which is the case given (a5) and µh1K < µ`1K . The same also holds against m2j

because an1 + h is lower in the noninterior solution after (m1K ,m2j) than that after
(m1K1 ,m2j) as explained below: it is straightforward if an2 + ` > 0 at (m1K ,m2j) since
E(a2|µ2j) > E(a2|µ2K2) implies an2 +` < 0 at (m1K1 ,m2j); if an2 +` < 0 at (m1K ,m2j),
on the other hand, it is routinely verified to be the case if and only if

(a6) µh1K1
> µ̂h1K1

=
(h− `)µh1Kµh2j − `(1− µ`1K)(1− µh2j)
hµh2j − `((µh1K + µ`1k − 1)µh2j + 1)

,

which holds because by subtracting the RHS of (a6) from µh
1K1

we get

(hµh2j − `)(h(1− µh1K)µh2j + `(1− µ`1K − µh2j + µh1Kµ
h
2j))

(µh2j(h− `)− `)(µh2j(h+ `)− (1 + (µh1K + µ`1K)µh2j)`)
> 0
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given that h(1− µh1K)µh2j + `(1− µ`1K − µh2j + µh1Kµ
h
2j) increases both in µh2j and µ`1K

and assumes 0 at µh2j = −`
h−` and µ`1K = µh1k.

Therefore, there must exist a message, say m2J , such that Eb(µ1k) ≤ Eb(µ2J) <
Eb(µ1K) and against which agent 1-h does strictly worse with m1K than with m1K1 .
This condition, obtained by an analogous calculation for (a6), is

(a7) µh1K1
<

(h− `)µh1Kµh2J − `(µh1K + (1− µ`1K)µ`2J)

hµh2J − `((µh1K + µ`1K)(1− µ`2J) + µ`2J)
.

At the same time, agent 2-` does better with m2K2 than with m2J relative to
agent 2-n (and 2-h) against all m1k′ such that Eb(µ2J) ≤ Eb(µ1k′) ≤ Eb(µ2K2) by the
standard argument; against all m1k′ with Eb(µ1k′) < Eb(µ2J) both agents 2-n and
2-` obtain unconstrained optimum. Therefore, agent 2-` should do worse, relative to
2-n, with m2K2 than with m2J against m1K1 . This requires that an2 + ` < 0 at the
noninterior solution after (m1K1 ,m2J), which is verified to be the case if and only if

µh1K1
>

hµh2J−`(1−µ
`
2J )

hµh2J−`(2−µ
`
2J )

, but this is incompatible with (a7) because by subtracting the

RHS of (a7) from this lower bound we get[
h(1− µh1K)µh2J − `(µ`1K − µh1K(1− µ`2J) + µ`2J)

]
(hµh2J − `)

(hµh2J − `((µh1K + µ`1K)(1− µ`2J) + µ`2J))(hµh2J − `(2− µ`2J))
> 0

where the inequality follows since the expression in the bracket decreases in µh1K and
assumes (1− µ`1K)(hµh2J + `µ`2J) > 0 when µh1K = µ`1K .

This verifies [5]. Consequently, both players may send two messages one of which is
µi1 = (0, 1, 0) =: µn and the other is µiKi

= (1/2, 0, 1/2) =: µb. There are a continuum
of continuation equilibria after (µb, µb) but they all are interior and generate the
same payoff for all types. The continuation equilibrium is unique after (µb, µn) and
after (µn, µb). Jointly controlled lotteries (JCL) are possible via randomization of
equilibrium allocations after pairs of messages that generate posterior pair (µn, µn).
Various specifications of JCL correspond to different PBE so long as the incentive
compatibility is satisfied for both players to send suitable messages depending on
their types. The welfare is the same across all these PBE’s because the allocation is
the same after each possible type realization. However, the incentive compatibility is
satisfied most widely in the equilibrium described in Section III.C of the main paper
because, given the symmetry between the two agents, the equal randomization of
specialization by the agents in the two areas minimizes the incentive of either agent
of biased types to mimic the neutral type.

3 Incentive Compatibility

Lastly, we determine when the IC is satisfied for the equilibrium in Section III.C of
the main paper. Consider an `-type agent, say i, sending the equilibrium message b.
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If his opponent is of n-type, they play the unique noninterior continuation equilibrium
for µi = µb and µ−i = µn as in Lemma 2 of the main paper; otherwise they play an
interior equilibrium for (µ1, µ2) = (µb, µb) as in Lemma 1. Hence, an `-type agent’s
expected payoff from sending b is calculated as

1

3

{
−
[
(1 + `)−

(
1− h

2
+

3`

2

)]2
−
[
(1 + `)−

(
1 +

h

2
+
`

2

)]2}
=
−(h− `)2

6
.

Next, suppose an `-type agent deviates by sending n or n′. If his opponent is of
n-type, he achieves his ideal allocation 1 + ` with probability 1/2 but ends up with a
total allocation of 1 to A with the other probability 1/2; otherwise, he gets a payoff
for the (irrelevant) agent i-` in the unique noninterior continuation equilibrium for
µi = µn and µ−i = µb. Thus, his expected payoff from deviating is

1

3

{
− [(1 + `)− (1 + 2`)]2 − [(1 + `)− 1]2 − 1

2
[(1 + `)− 1]2

}
=
−5`2

6
.

Therefore, IC holds for an `-type agent if and only if ` ≤ −(1 +
√

5)h/4.
Analogously, we calculate the expected payoffs of an h-type agent from sending b

and sending n or n′, respectively, as

−2(h+ `)2 − (h− `)2

6
and

−h2 − 4`2

6

so that IC holds for h-type if and only if ` ≤ (1 −
√

3)h, which holds whenever the
IC holds for `-type because −(1 +

√
5)/4 < 1 −

√
3. Moreover, the IC always holds

for an n-type agent as it is routinely calulated that his expected payoff from sending
n or n′ is −2`2/3 while that from sending b is −(h− `)2/6 < −2`2/3.

Therefore, the equilibrium described in Section III.C constitutes the maximim
welfare equilibrium of the communication game if and only if ` ≤ −(1 +

√
5)h/4.
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