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B Data and Estimation

B.1 Sample Construction

The original sample consists of 2487 contracted-out projects and 1945 projects com-

pleted by the Corps. Any projects that were missing bid information, project size,

start date, or the number of working days were removed. There are three Corps

districts that contract out dredging work on the Great Lakes: Chicago, Buffalo, and

Detroit. These contracts were also removed, as there are no Corps-owned dredges

that are active in the Great Lakes region. Lastly, extremely large projects (expected

contract price exceeding $20M) were removed, as projects of this size are never ob-

served to be taken by Corps dredges and they often require multiple large dredges

working on the project at once, which is not something the Corps is equipped to

accommodate. 77 Corps projects that had overlapping dates in the same district

were combined. Additionally, 29 projects involving emergency dredging after the

Deepwater Horizon oil spill in the Gulf region were removed. This leaves a final

sample of 3,722 observations across 31 districts.

Table 6 gives a list of USACE districts and provides a breakdown of how many

of the total projects in each district are Corps projects and how many are contracted

out. It also lists the average volume of dredged material for projects in each district.

Table 7 lists the total dredging projects each year and indicates how many were

Corps projects and how many were contracted out.



Table 6: USACE Districts

District Total Projects Corps Projects Contracted Projects Mean Project Size (cu. yds. in thousands)
Alaska 51 2 49 401
Baltimore 112 39 73 537
Buffalo 78 0 78 206
Charleston 79 25 54 1,099
Chicago 33 0 33 95
Detroit 232 0 232 54
Galveston 215 0 215 1,747
Honolulu 8 2 6 94
Huntington 31 0 31 86
Jacksonville 189 17 172 624
Kansas City 2 2 0 47
Little Rock 4 0 4 1,251
Los Angeles 48 12 36 827
Louisville 16 1 15 945
Memphis 24 17 7 6,555
Mobile 127 16 111 1,296
New England 96 62 34 114
New Orleans 562 235 327 1,763
New York 138 26 112 524
Norfolk 203 80 123 270
Philadelphia 270 152 118 433
Pittsburgh 14 0 14 10
Portland 380 310 70 414
Rock Island 18 11 7 269
Sacramento 8 0 8 258
San Francisco 104 67 37 454
Savannah 43 0 43 2,798
Seattle 72 28 44 491
St. Louis 190 186 4 273
St. Paul 66 46 20 312
Tulsa 1 0 1 530
Vicksburg 86 68 18 765
Walla Walla 1 0 1 11
Wilmington 654 541 113 240



Table 7: Projects by Year

Fiscal Year Total Projects Corps Projects Contracted Projects
1999 251 125 126
2000 232 114 118
2001 232 99 133
2002 263 141 122
2003 323 177 146
2004 275 145 130
2005 236 124 112
2006 248 156 92
2007 216 115 101
2008 218 118 100
2009 220 109 111
2010 283 132 151
2011 259 158 101
2012 251 145 106
2013 192 86 106

B.2 Estimation and Results

This section provides additional details on the estimation of the model.

B.2.1 Expected Contract Price

Expected winning bids are estimated directly from the data non-parametrically.

First, the distribution over the number of bidders is estimated. This is done non-

parametrically by counting the number of observations with each number of bidders

after smoothing over contract characteristics. The maximum number of bidders in

each district k is Nk. This is estimated by taking the maximum number of bidders

observed in the market over the sample period. Let ηkn(xt) be the probability

that n bidders are observed in an auction with project characteristics xt. Next the

expected winning bid conditional on the number of bidders is with a Nadaraya-

Watson estimator. Let An denote the set of auctions in which there are n bidders.

Then the expected winning bid for an auction with characteristics x in market k is



given by averaging over the expected winning bid for each number of bidders:

R̂(x, N̂kt) =
N̂kt∑
n=1

η̂kn(xt)

∑t∈An K
(
x−xt
hx

)
bt∑

t∈An K
(

(x−xt)
hx

)
 .

The kernel function K is a multiplicative normal kernel, and the bandwidth param-

eter hx is obtained using Silverman’s rule of thumb.

B.2.2 Government Cost Distribution

The government cost distribution is estimated from periods in which the available

project is located in the same district as the assigned government dredge and the

next available project in the dredge’s region will begin after the current project has

ended. There are 1086 such observations in the data.

Estimation of the parameters in (α, ρ) takes place by linking the observed choices

for the static periods to the conditional distribution function of government costs.

The each government choice observation is a draw from a Bernoulli distribution

with probability parameter given by the distribution of government costs evaluated

at the expected contract price. Recalling that G denotes the cdf of Cgt, we have

that

Pr(dt = 0|zt) = G(R(xt, Nkt)).

We obtain the estimator for (α, ρ) by gathering all static observations and max-

imizing the joint two-step likelihood after plugging in the first-stage estimates for

R(zt) obtained in the previous section. More formally, let T represent the set of

periods in which the future value components of utility cancel. Then the estimator

is

(α̂, ρ̂) = arg max
α,ρ

∏
τ∈T

G(R̂(xt, N̂kt);α, ρ)1−dt × [1−G(R̂(xt, N̂kt);α, ρ)]dt (17)

With the estimate for the government cost distribution we can proceed to the



estimation of the dynamic model and recover the distance cost parameter.

B.2.3 Distance Parameter θ

In the data, several districts have multiple dredges that perform projects in the dis-

trict. This complicates dynamic considerations, as the availability of both dredges

must be accounted for when considering the future value component. For these

regions, I consider all dredges that are linked by the overlapping district(s) simul-

taneously; this results in a state variable consisting of distances and locations for

each of the dredges in that set of districts. In such cases I assume that an in-house

decision to send the closest available dredge to the project. This assumption is em-

pirically motivated: for over 97% of in-house projects the closest available dredge is

selected to complete it.36 This result of this grouping is a set of five non-overlapping

regions I1, ..., I5, in which no vessel operating in any one of the regions takes projects

in any of the others, that operate in parallel. There are also fifteen fiscal years Y

spanning 1999-2013. Hence, the value function is generated via backwards induction

for each region-year pair, and estimates are obtained by maximizing the likelihood

across all such region-year pairs. For notational simplicity I drop the dependence

on the regions I and fiscal year Y in much of what follows.

The last step in the estimation of the model primitives relating to government

cost is to use the results of the first two stages to write an expression for the value

function that allows for estimation of the distance cost parameter θ. Specifically, the

estimator for θ will be a two-stage maximum likelihood estimator in which the first-

stage estimates are plugged into the likelihood function for government decisions.

Construction of the value function is done through backwards induction; beginning

in the last period T we have that the probability that the project is kept in-house
36This can be understood by thinking of the network of districts as approximately linear, with

most regions consisting of locations along the coast or within the inland waterway system. For
these networks there is no distance reduction from sending any vessel that isn’t already the closest
to the project.



p0T (zt) is

p0T (zT ) = 1{yT=0}Pr(CgT + θδT < R(xT , NkT ))

= 1{yT=0}G(R(xT , NkT )− θδT | xT )

and p1T (zT ) = 1− p0T (zT ). Then the ex-ante value function in period T and state

zT is

V T (zT ) = p0T (zT )E[π0(zT )|dT = 0] + p1T (zT )π1(zT )

which can be expressed as

V T (zT ) = p0T (zT )

θδT +
∫ R(xT ,Nkt

)−θδT
0 uĝ(u)du
Ĝ(R(xT , NkT )− θδT )

+ p1T (zT )R(xT , NkT ).

For t = 1, ..., T − 1 we have that

p1t(zt) = 1{yt=0}Pr
(
Cgt + θδt + βt

∑
zt+1∈Z

V t+1(zt+1)q0t(zt+1|zt) < R(xt, Nkt)

+βt
∑

zt+1∈Z
V t+1(zt+1)q1t(zt+1|zt)

)
.

Recalling that

v0t(zt) = θδt + βt
∑

zt+1∈Z
V t+1(zt+1)q0t(zt+1|zt),

v1t(zt) = R(xt, Nkt) + βt
∑

zt+1∈Z
V t+1(zt+1)q1t(zt+1|zt).

then the ex-ante value function in period t and state zt is

V t(zt) = p0t(zt)
[
v0t(zt) +

∫ v0t(zt)−v1t(zt)
0 uĝ(u)du
Ĝ(v0t(zt)− v1t(zt))

]
+ p1t(zt)v1t(zt).

Then we can express the conditional choice probability of keeping a project in-



house as

p̂0t(zt) = Ĝ(v0t(zt)− v1t(zt)).

Recalling that there are five non-overlapping regions I and fifteen fiscal years Y ,

this gives the estimator for θ as

θ̂ = arg max
θ

5∏
I=1

15∏
Y=1

∏
t∈TIY

(p̂1t)dt × (1− p̂1t)1−dt . (18)

where TIY is the set of projects in region I during fiscal year Y . Since the estimates

from the first stage are consistent estimates for the estimated winning bid and the

distribution of government costs, (18) yields a consistent estimate for θ.

Finally, the estimate for θ is robust to both different choices for the annual

discount parameter β̃ as well as different specifications for time discounting. The

first three rows of Table 8 shows the value for θ when different values of β̃ are used in

estimation. The last row shows the estimate obtained when all periods are assumed

to have the same discount factor: βt = β̃1/T for all t, where T is the total number

of projects. This corresponds to the assumption that the USACE treats all periods

as if they have the same duration in calendar time, or that project start dates

are approximately evenly distributed throughout the year. The results are similar

across specifications, suggesting that the results are robust to different assumptions

on time discounting by the USACE.

Table 8: Estimates of θ for varying time discount factors

β̃ θ̂

0.90 0.0212
0.94 0.0222
0.99 0.0207



B.2.4 Entry Cost Distribution

Estimation of the entry cost parameters proceeds in two steps. First estimates for

the equilibrium entry cutoff values ê∗k(x) are generated from equation (10) using the

empirical distributions over the number of bidders η̂kn. Then for each λ, ζ(ê∗k(x))

gives the probability for an individual bidder’s entry into an auction in market k with

project characteristics x. The estimate λ̂ is generated by maximizing the likelihood

of the observed number of bidders in each auction.

B.2.5 Firm Cost Distribution

The winning bid distribution is estimated parametrically, with the parameterization

given by

bit ∼ Log-normal(µt, γt),

where

log(µt) = µ0t + µ1tx1t + µ2tx2t + µ3Nt, log(γt) = γ0 + γ1x1t + γ2x2t + γ3Nt.

Once estimates of the winning bid distribution parameters have been obtained,

firm costs can be expressed as

ĉ = b− N [1− Ŵ (b)]
(N − 1)ŵ(b) . (19)

where b is a submitted bid. Hence for any bid, the associated cost can be found by

applying (19) using the estimated winning bid distribution. To generate the cost

distributions, bids are randomly sampled from the bid distribution obtained via the

order statistic transformation Ĥ(b) = 1−[1−Ŵ (b)]1/N and these sampled bid values

are used to generate firm costs ĉ.



B.2.6 Discussion of Results

This section provides additional discussion of the results and compares the Corps

cost estimates to available cost accounting data from the USACE and Government

Accountability Office (GAO). There are two main sources of data. The first is

the USACE Continuing Dredging Cost database, which contains information on

cost-per-cubic yard measures for Corps and industry dredging. The second is a

GAO report that conducts a cost audit of a particular USACE dredge, the Wheeler,

that overlaps with the early years of the sample. Additional cost estimates are

obtained from a 2005 USACE Report to Congress (United States Army Corps of

Engineers (2005), Table 11) that contains cost-per-day estimates for Corps and

industry dredges.

Table 9 contains the cost-per-cubic yard (in 2013 US dollars) and cost per work-

ing day estimates supplied by the USACE. Primarily the table indicates that Corps

dredges are estimated to have lower cost per cubic yard measures but higher cost

per working day measures when compared to industry dredges. As discussed in the

text, these cost measures match my estimates on a qualitative basis, as they imply

that Corps dredges should take projects that have a high ratio of cubic yards to

working days. This feature is present in the data and is reflected in my estimates.

However, other data sources suggest that the cost measures reported by the

USACE may under-report the total costs of dredge operation. In particular, they

may reflect only a limited set of variable costs, such as those associated with labor

and fuel, and do not factor in maintenance, repairs, and other costs. I demonstrate

this issue using the costs associated with the Corps dredge Wheeler over the early

years of my sample, as there are multiple sources on costs over this time period for

this particular vessel. In addition to the cost per cubic yard measure reported by

the Corps, from which total costs can be constructed from the total cubic yards

reported to be dredged by the vessel, a GAO report, GAO-03-382, performed an

audit of the operational costs of the Wheeler from 1994-2001.



Table 9: Cost comparison between USACE and industry dredging

Cost per cubic yard:

Cost per cu. yd. Cost per cu. yd.

Year Corps Industry Year Corps Industry
2000 2.66 4.12 2009 3.37 6.30
2001 2.62 4.55 2010 3.78 8.08
2002 2.99 5.13 2011 2.87 7.06
2003 3.32 5.07 2012 3.16 5.69
2004 3.35 4.15 2013 3.35 5.74
2005 2.86 4.77 2014 4.32 6.74
2006 3.02 6.09 2015 5.11 7.09
2007 2.85 5.93 2016 4.08 6.23
2008 2.82 5.46 2017 4.51 5.40

Corps average: $3.39/cu. yd.
Industry average: $5.76/cu. yd.

Cost per working day:
Corps cost per working day: $47,000 - $87,000
Industry cost per working day: $34,905 - $65,700

Sources: USACE Dredging Continuing Cost database (USACE Institute for Water Resources (2018)) and
Table 11 (page 18) of 2005 USACE Report to Congress (United States Army Corps of Engineers (2005)).

Table 10 shows results of the GAO audit of total average costs for operation

of the Wheeler separated into two time periods. The table is taken from Table

1 of Government Accountability Office GAO-03-382, which tracked how total costs

changed with different utilization levels of this dredge. The average total annual cost

for the years 1998 through 2001 was $13,631,862, while the total costs associated

with payroll and fuel was $4,390,390. For the years that overlap with my data, 1999-

2001, the Corps reports for the average annual total costs associated with projects

completed by the Wheeler as $4,926,817. This strongly suggests that Corps cost

estimates are under-reporting the average total cost of completed projects, and may



Table 10: Cost summary for Corps dredge Wheeler, 1994-2001

Cost Component 1994-1997 1998 - 2001 Percentage Change
Average days worked 183 83 -55%
Average cubic yards 11,847,040 5,245,606 -56%
Crew size 54 42 -21%

Average annual cost $17,136,028 $13,631,862 -20%
Payroll costs $3,635,146 $3,557,938 -2%
Fuel costs $1,206,578 $832,452 -31%
Other costs $12,294,304 $9,241,472 -25%

Source: Table 1 (page 13) of GAO-03-382 (Government Accountability Office (2003)).

instead reflect only the costs associated with labor and fuel. This may not be

important if these labor and fuel costs represented all or most of the variable costs

associated with project completion. However, this is not the case, as variation in

the utilization of the Wheeler over the years covered in the report had significant

effects on costs not associated with fuel or labor. Table 10 shows that “Other costs”

declined by over $3 million, or 25%, when the utilization of the dredge declined by

55%. While many of the expenses in the “Other costs” category are likely fixed,

the variation present with changes in utilization indicates substantial variable costs

associated with dredge operation.

As a back-of-the-envelope calculation to assess total variable costs, suppose that

“Other costs” OC is linear in working days WD with a fixed costs component FC,

or OC = FC + δ ×WD. Applying this specification to the two columns in Table

10 gives the fixed costs as FC = $6, 707, 621 and the per-day variable costs not

associated with labor and fuel as δ = $30, 528. Combining this with the variable

costs of fuel and labor implies a total per-day cost of $83,425 for the period 1998-

2001. The estimates from my model imply a per-day cost of $75,801 (in 2003 dollars,

the year of the report’s publication). While this comparison is extremely narrow in

scope, covering only one vessel for a subset of the years in my data, it is suggestive

evidence that my estimates are broadly of an appropriate magnitude for the Corps’



marginal costs.

This variation in marginal costs of Corps dredge operation also suggests that

a substantial portion of the Corps’ dredging costs are associated with additional

dredge utilization, and fixed costs do not make up an overwhelming component of

expenses. As discussed in Section 5.2, if the Corps faces extremely high fixed costs

but low variable costs, then it may not have a total cost advantage for small projects

but instead only a marginal cost advantage. While the available cost data does not

allow for direct comparison of fixed costs between Corps and private sector dredges,

the GAO audit of the Wheeler does indicate that variable costs are a substantial

component of operational expenses. Additionally, if the Corps had a low marginal

cost relative to private sector dredges, one might expect to see overall utilization

at high and stable rates, as idle dredging resources would be wasting the fixed cost

investment. However, as indicated in Table 15 of Section B.4.2 there is high variation

in the utilization of dredges over time.

B.3 Testing for selection in auction entry

The model used for entry of potential bidders into the auction is that of Levin

and Smith (1994) (henceforth LS), which assumes that bidders have no knowledge

of their private costs until after they make an entry decision. A recent empirical

literature has investigated whether there might be the possibility of selective entry:

bidders receive a noisy signal as to their private valuations prior to making an entry

decision, and choose to enter based on the information contained in this signal.37

Such an entry process will attract bidders that will typically have lower-than-average

costs into the auction, as in general only those potential bidders that have received

signals indicating a high probability of low project costs will choose to pay the entry

cost to participate in the auction.

To examine whether selective entry is a factor in this market, I use the non-
37Papers that empirically investigate the possibility of selective entry include Li and Zheng (2009)

and Roberts and Sweeting (2013).



parametric test of Marmer, Shneyerov, and Xu (2013).38 The intuition behind the

test is that when the number of potential bidders changes this should change the

observed bid distribution differently when there is selection versus when there is

not. That is, when there is selective entry then the bidders that choose to enter

in auctions with high numbers of potential bidders should have lower costs, and

therefore lower bids, than in auctions with lower numbers of bidders. In the LS

model, because bidders have no knowledge of costs prior to entry there should be

no difference in bids across auctions with different numbers of potential bidders,

conditional on the same number of active bidders. They propose a test based on

the test statistic T (x) = supτ∈Γ T (τ, x) where

T (τ, x) =
√
Lhd+1

N−1∑
N=N

N∑
N ′=N+1

|∆̂(τ,N,N ′, x)|
σ̂(τ,N,N ′, x) ,

the difference between quantiles of bidders’ valuations for each quantile value τ ∈ Γ

is

∆̂(τ,N,N ′, x) = Q̂(τ |N ′, x)− Q̂(τ |N, x),

the conditional quantile function of the distribution of active bidders’ costs is

Q̂(τ |N, x) = ξ̂(q̂(τ |N, x)|N, x),

and the inverse bidding strategy ξ(·) is given by

ξ(b|N, x) = b−
( 1
N − 1

)[ 1− p(N, x)
g(b|N, x)p(N, x) + 1−G(b|N, x)

g(b|N, x)

]
.

Here p(N, x) is the probability of that an individual bidder submits a bid with N

potential bidders in an auction with characteristics x, G(b|N, x) is the distribution

of observed bids in an auction with N potential bidders with characteristics x, and
38The notation used to decribe the components of the test statistic comes directly from their

paper.



g(b|N, x) is the associated density. The dimension of the auction characteristic space

X is d. These are estimated non-parametrically from the data,39 with the additional

of a transformation of the winning bid distribution Gw(b|N, x) as winning bids are

the only bids observed in my sample:

1−Gw(b|N, x) = (1− p(N, x) + p(N, x)[1−G(b|N, x)])N − (1− p(N, x))N

1− (1− p(N, x))N

Finally, σ2(τ,N,N ′, x) is the asymptotic variance of the test statistic:

σ2(τ,N,N ′, x) =
(∫

K(u)2du

)d+1 (1− p(N, x)(1− τ))2

(N − 1)2Np3(N, x)g3(q(τ |N, x)|N, x)π(N |x)ψ(x)

and π(N |x) is the distribution of the number of potential bidders conditional on x.

I use the set of auctions in my sample with at least four potential bidders and

two active bidders to construct the test statistic and critical values. Critical values

are obtained via bootstrap, where for each bootstrap iteration m the test statistic

is T ∗m(x) = supτ∈Γ T
∗
m(τ, x) and

T ∗m(τ, x) =
√
Lhd+1

N−1∑
N=N

N∑
N ′=N+1

|∆̂m(τ,N,N ′, x)− ∆̂(τ,N,N ′, x)|
σ̂m(τ,N,N ′, x)

Details of the test results are in Table 11 where critical values are based on 1000

bootstrap samples. High values of the test statistic would indicate the presence of a

selection effect. The LS model cannot be rejected at the 10%, 5%, or 1% confidence

levels, suggesting that the selection effect is not a large factor in this market and

the LS model is a reasonable representation of bidder entry behavior.
39Specifically, these objects are estimated non-parametrically using two auction characteristics,

working days and project volume, using normal kernels with bandwidth parameters chosen by
Silverman’s rule of thumb.



Table 11: Test results for selective entry

Test statistic 10% critical value 5% critical value 1% critical value
3,615.9 7,783.1 9,895.6 41,440

B.4 Other Figures and Tables

This section gives additional figures and tables, split into three subsections. The

first subsection provides additional details on the auctions, including bidder partic-

ipation, cost distributions by number of bidders, auction model fit, and regressions

of winning bids on availability of USACE dredges, number of recently issued private

dredging permits, and other variables. The second subsection provides additional

details of government dredging activity and also provides supporting evidence that

costs are similar across districts by comparing the average costs per cubic yard of

dredged material. The last section presents evidence that the contracted price is

a good estimate for the final ex-post price after all adjustments have been made,

suggesting that holdup and ex-post renegotiation are not large factors in this market.

B.4.1 Auction



Figure 5: Histogram of Auction Participants by Region

Note: Histogram of the number of bidders in project auctions separated
by region. Districts located on the Atlantic and Gulf coasts have compar-
atively higher numbers of bidders, while the Inland Waterways and Pacific
regions have lower competition overall and a greater chance of having a
single bidder.



Table 12: Regressions of variables on number of bidders

(1) (2)

Working Days 0.007** 0.005
(0.002) (0.002)

Project Volume (cu. yds.) -0.034 -0.135***
(0.028) (0.039)

# Ongoing USACE projects -0.036 -0.033
(0.020) (0.020)

USACE eng. estimate 0.194***
(0.054)

Constant 3.164*** 1.603**
(0.328) (0.553)

District Yes Yes
Year Yes Yes

Observations 1,777 1,777

Note: * p < 0.05, ** p < 0.01, *** p < 0.001. This table contains
regression results for the effect of observable characteristics on the number
of bidders. The variable “Ongoing Projects” represents the number of
projects underway in the district at the time the current project is set
to begin. That this variable has a statistically insignificant effect on the
number of bidders in the auction, suggesting that the number of currently
ongoing projects does not impact bidder participation in auctions.



Table 13: Effects of USACE dredge availability, distance, and current ongoing
projects on winning bid levels

(1) (2) (3) (4)

USACE dredge available 0.011 -0.022
(0.067) (0.031)

Working Days 0.014*** 0.001 0.016*** 0.001
(0.002) (0.001) (0.002) (0.001)

Project Volume (cu. yds.) 0.523*** 0.042*** 0.524*** 0.042***
(0.020) (0.009) (0.021) (0.010)

# Ongoing USACE projects -0.017 -0.002 -0.011 -0.001
(0.010) (0.004) (0.010) (0.005)

USACE eng. estimate 0.929*** 0.929***
(0.013) (0.014)

Distance -0.004 -0.003
(0.004) (0.002)

Constant 1.228*** -6.246*** 1.244*** -6.199***
(0.221) (0.125) (0.246) (0.139)

District Yes Yes Yes Yes
Year Yes Yes Yes Yes

Observations 1,777 1,777 1,599 1,599

Note: * p < 0.05, ** p < 0.01, *** p < 0.001. This table contains
regression results for the effect of observable characteristics on the winning
bid. The variable “Ongoing Projects” represents the number of projects
underway in the district at the time the current project is set to begin.
The availability of a USACE dredge is captured by the indicator “USACE
dredge available”, which is equal to one if a Corps dredge that serves the
district is available and is zero otherwise. The variable “Minimum USACE
dredge distance” measures the minimum distance from the project to any
available USACE dredge.

Private dredging permits statistics:

B.4.2 USACE



Table 14: Effects of private dredging activity on winning bid levels

Winning bid Number of bidders

(1) (2) (3) (4) (5) (6)

Working Days 0.014*** -0.001 0.014*** -0.001 0.014* 0.014*
(0.003) (0.001) (0.003) (0.001) (0.007) (0.007)

Project Volume (cu. yds.) 0.521*** 0.070** 0.521*** 0.070** -0.462*** -0.461***
(0.037) (0.021) (0.037) (0.021) (0.100) (0.100)

# Ongoing USACE projects -0.026 -0.016 -0.026 -0.016 -0.063 -0.062
(0.025) (0.012) (0.025) (0.012) (0.053) (0.053)

# Dredging permits issued (past 4 weeks) -0.004 -0.002 0.002
(0.003) (0.001) (0.007)

# Dredging permits issued (past 8 weeks) -0.001 -0.001 0.002
(0.001) (0.001) (0.004)

USACE eng. estimate 0.893*** 0.895*** 0.304* 0.303*
(0.025) (0.025) (0.123) (0.123)

Constant 0.926* -6.155*** 0.903* -6.167*** 2.197 2.177
(0.390) (0.249) (0.391) (0.249) (1.434) (1.434)

District Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes

Observations 430 430 430 430 430 430

Note: * p < 0.05, ** p < 0.01, *** p < 0.001. This table contains regression results that
include data on private dredging permits issued from 2010-2013. The dependent variable
is the log of the winning bid or the number of bidders for each project contracted out.
The variables “# Dredging permits issued (past X weeks)” indicate the number of dredging
permits issued by the USACE for dredging projects not overseen by the Corps and in the
same district as the auctioned project. These variables serve as a measure of private (and
non-USACE public) dredging activity currently underway in the district at the time the
auction takes place.

Variable Mean Std. Dev. Min Max
# Dredging permits issued (past 4 weeks) 11.28 15.81 0 117
# Dredging permits issued (past 8 weeks) 22.13 30.14 0 228



Figure 6: CDF of winning bids by number of bidders

Note: This figure shows the CDF of winning bids separated by the number
of bidders. The bids have been normalized by the auction reserve, e.g.
b̃ = b/r where r is the auction reserve.



Figure 7: Model fit for winning bids
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Note: This figure plots the realized winning bid for each auction against
the model prediction (i.e. the expected winning bid for the auction). Both
the x-axis and y-axis are displayed on a log scale, and the solid black line
represents the 45-degree line.



Table 15: Utilization of USACE dredges

Working Days Number of
Vessel name Mean Std. Dev. Min Max districts
Hurley 136.5 33.8 89 215 1
Wheeler 87.3 39.0 25 162 3
McFarland 133.5 43.3 60 192 8
Essayons 179.6 41.1 38 216 5
Yaquina 180.5 15.6 131 197 4
Potter 129.8 53.9 10 213 4
Thompson 116.6 35.3 65 152 1
Jadwin 124.9 31.9 75 188 4
Currituck 329.6 33.7 259 365 7
Fry 287.4 68.2 114 363 4
Merrit 284.9 60.5 135 361 4
Schweizer 131.0 0 131 131 1
Goetz 147.3 58.6 20 211 3
Murden 107.3 132.3 6 257 2

Note: Annual working days and the number of USACE districts visited
of each dredge in the USACE fleet over the years 1999-2013. The USACE
operates a maximum of 12 dredges each year: the dredge Schweizer only
operated for a single year in 1999 before being retired. The Goetz replaced
the Thompson in 2005. The vessel Murden was added in 2012.



Table 16: Test of Cost per Cubic Yard Differences Against Sample Average by
District

District p-value
Alaska 0.7039
Baltimore 0.9237
Charleston 0.5519
Galveston 0.2417
Honolulu 0.0032
Huntington 0.7583
Jacksonville 0.6456
Little Rock 0.8468
Los Angeles 0.9860
Louisville 0.7424
Memphis 0.7854
Mobile 0.0109
New England 0.0001
New Orleans 0.0988
New York 0.4402
Norfolk 0.5437
Philadelphia 0.6128
Pittsburgh 0.2349
Portland 0.9422
Rock Island 0.8852
Sacramento 0.9068
San Francisco 0.9601
Savannah 0.5712
Seattle 0.7509
St. Louis 0.8420
St. Paul 0.8599
Tulsa 0.9248
Vicksburg 0.6804
Walla Walla 0.9083
Wilmington 0.4380

Note: This table reports the p-value of a difference in means test for cost
per cubic yard of dredged material in each district versus the entire sample
average. Before adjusting for testing multiple hypotheses there are three
districts that have p-values significant at the 5% level: Honolulu, Mobile,
and New England. Collectively, these projects in these districts account
for 5.91% of all projects. After applying the Bonferroni correction for
multiple comparisons, only one district, New England, has a mean cost
per cubic yard that is significantly different from the sample average at
the 5% level.



B.4.3 Ex-post payment changes

Figure 8: Winning Bids against Ex-post Payment Changes

Note: Plot of winning bids against the ex-post changes in payment to
the contracted firm. There is no readily observable pattern that suggests
cost adjustments correlate more strongly with smaller or larger projects;
if anything, very large projects are more likely to have reductions made
to the initial bid.
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Figure 9: Histogram of Changes to Winning Bid

Note: This figure is a histogram of ex-post changes to contract price as a
percentage of the winning auction bid. While nearly all contracts feature
changes to the winning bid, the mean change is almost exactly zero.
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