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This appendix contains an extension of the model to a setting with more general contracts,

and a proof of existence of bilaterally stable prices.

1 More General Contracts

The analysis focused on joint and separate contracts, but more general contracts can be

written if securities depend on the vector of agreements. Formally, a security S : RN → R+

indicates the payment to the investors as a function of the vector of agreements with the

buyers. Following the agreements (x1, . . . , xN), the investors will receive S(x1, . . . , xN) and

the firm will keep the remainder X − S(x1, . . . , xN), where X =
∑N

i=1 xi. While joint and

separate contracts are obviously special cases, we will show that financing each project with

debt separately remains optimal within a large class of these securities.

Vectors are denoted by bold symbols. Given a price vector x = (x1, . . . , xN), let x̂j =

(x1 . . . , xj−1, 0, xj+1, . . . , xN) denote the vector that results when replacing the j-th element

of x with 0, and the marginal payment to the investors from reaching an agreement with

buyer j is therefore S(x)−S(x̂j). The key property is that the sum of the marginal payments

to the investors does not exceed the total payment:

N∑
i=1

S(x)− S(x̂i) ≤ S(x) for all x ≥ 0 (1.1)

Proposition 1. Financing each project with debt separately is optimal within the class of

securities satisfying (1.1).
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The proof is identical to that of Proposition 3.

Proof. First, if the prices x1, . . . , xN are bilaterally stable, then the firm’s gain from each

trade will not exceed the buyer’s gain:

xi − (S(x)− S(x̂i)) ≤ vi − xi,∀i

Second, if the security satisfies (1.1), the firm’s profit will not exceed the sum of the firm’s

gains from each trade:

X − S(x) ≤
N∑
i=1

xi − (S(x)− S(x̂i)) , where X =
N∑
i=1

xi

Thus, the firm’s payoff will not exceed the buyers’, X − S(x) < V −X, and half the social

surplus is an upper bound.

These securities are more general but they also require stronger, and perhaps unrealistic,

assumptions on the contracts. Observe that if the firm can shuffle the proceeds from one

project to another, then the payment to the investors will only depend on the sum of the

proceeds. We therefore focused our analysis on the more common contracts.

2 Existence of Bilaterally Stable Outcome

Lemma 6. If S is a smooth and concave function, then a bilaterally stable outcome exists.

Proof. Assume without the loss of generality that S ′(Y ) < 1 for all Y ≥ 0 (if S ′+(0) ≥ 1, then

(0, . . . , 0) is bilaterally stable). Recall in a bilateral bargaining game with payoffs Gj(S, Y )

and continuation probability p < 1, the maximal SPE price when the buyer (resp. the firm)

makes the first offer is xBj (Y, p) (resp. xFj (Y, p)). The functions are well defined (see Lemma

4). We will first show that xFj (Y, p) and xBj (Y, p) converge, as p→ 1, to
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xj(Y ) := max

{
x : x+

x− S(Y + x) + S(Y )

1− S ′(Y + x)
= vj and x ≤ vj

}
(2.1)

Since S ′ < 1, xj(Y ) exists and vj > xj(Y ) > 0. It follows from Lemma 4 that there is a pair

of prices xB and xF , where vj > xF > xB > 0, that solves

vj − xF = p(vj − xB) (2.2)

Y + xB − S(Y + xB) = (1− p) (Y − S(Y )) + p (Y + xF − S(Y + xF )) (2.3)

and the prices xBj (Y, p) and xFj (Y, p) are the maximal prices that solve (2.2) and (2.3).

Therefore, if we let

g(x, Y, p) = x− S(Y + x) + S(Y )− p (px+ (1− p)vj − S(Y + px+ (1− p)v) + S(Y ))

then

xBj (Y, p) = max {x : g(x, Y, p) = 0 and x ≤ vj} (2.4)

By the intermediate value theorem,

g(x, Y, p) = 0 ⇐⇒ x+
x− S(Y + x) + S(Y )

p (1− S ′(Y + x̃p))
= vj, (2.5)

where x < x̃p < px+(1−p)vj. Hence, given δ > 0, we have that xBj (Y, p) ∈ (xj(Y )− δ, xj(Y ) + δ) ,

for all p sufficiently large, and xBj (Y, p) → xj(Y ) as p → 1. Moreover, xj(Y ) is continuous

by the maximum theorem. Finally, prices y1, . . . , yN that satisfy yj = xj(Y−j), ∀j, are bi-

laterally stable. Therefore, define φ : [0, v1]× . . .× [0, vN ]→ [0, v1]× . . .× [0, vN ] such that

φ(y1, . . . , yN) = (x1(Y−1), . . . , xN(Y−N)). Since φ is a continuous function from a convex and

compact set onto itself, there exists a fixed point that is bilaterally stable.
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