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A. PROOFS

I prove the following Lemma (which allows for more than two possible signals), and note that
Lemma 2 follows immediately when pure strategy equilibrium is imposed (noting that the require-
ment in the Lemma holds immediately whenever a = ã).

Lemma 5. Suppose the receiver infers the sender’s choice as ã. �en if the sender chooses experiment
a such that P[y | ã, ✓] = 0 implies P[y | a, ✓] = 0, sender’s payo�s can be wri�en:
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Proof of Lemma 5. �e sender’s payo�s can be expressed as:
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where the expectation is taken over realizations of ✓ and y, and e
ã

is the receiver’s equilibrium
e�ort as a function of y. Note that the distribution over y is a function of the true sender choice
(i.e., a), and not the inferred sender choice (i.e., ã). Further noting that we can restrict to y which
occur under a with positive probability, and that P[y | a, ✓] > 0 implies P[y | ã, ✓] > 0. We thus
rewrite the expectation as over realizations of y and ✓:
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ã

(y), ✓) ·
✓
P[y | a, ✓]
P[y | ã, ✓]
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ã

(y), ✓) ·
✓
P[y | a, ✓]
P[y | ã, ✓]
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P[y | ã, ˜✓]P[˜✓]
·
X

✓̃
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ã

(y)


US

(e
ã
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Essentially, the argument follows from noting that under the full support condition, it is possible
to divide and multiply every term in the sum by P[y | ã, ✓] and P

ã

[y], in order to move between
the objective distribution over states and the distribution perceived by the receiver a�er observing
y. �e ��h line follows from an application of Bayes rule, noting that this term is equal to the
posterior belief that the state is ✓ when the chosen experiment is ã. Finally, in any pure strategy
equilibrium, we have both that the sender chooses a and that the receiver infers that the sender
chose experiment a. Hence P[y | a, ✓] = P[y | ã, ✓], giving the second expression.

An alternative way of expressing sender’s payo�s in the case where ã 6= a is:
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which follows from noting that p̂
a

(y)[✓] · P[y | a] = P[✓, y | a] = P[y | a, ✓]P[✓]. In other words,
to use the belief ratio to switch between “actual” and the “inferred.” In the case where the sender
and receiver disagree over the prior (as opposed to the experiment), Alonso and Câmara (2016) use
belief ratios to rewrite the receiver’s induced belief as a function of the sender’s (their Proposition
1), and subsequently apply the belief based approach to the sender’s value function. Note that
their Proposition 1 is true regardless whether the experiment is sender-optimal, although their
primary applications of this result relate to this case.

�e next proof is stated assuming no restrictions on the number of indices. In this case,
Assumptions 2 and 3 should be understood as applying to the vector of indices which may
potentially be unobservable to the receiver.

Proof of Lemma 1. Suppose M is the index set of observable indices, and partition the sender’s
action into a = (a

M
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). �is proof shows that there is some a⇤�M

such that when the receiver
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conjectures that a⇤�M

are the unobserved actions of the sender, the sender’s best response is to
follow action a⇤�M

. Since p0 is interior and, for any choice of experiment, some signal occurs with
positive probability in some state, the receiver always puts non-negative probability on observing
any y 2 {0, 1}, for any conjecture regarding the sender’s behavior. �erefore, there is a unique
belief pro�le (p̂

a

(y))
y2Y formed a�er observing any signal, for any equilibrium strategy of the

sender. In fact, since A is compact, we have that P[y] is bounded away from 0 for all y. �is
implies that beliefs are a continuous function of actions, and well-de�ned given any conjecture.
With these preliminaries in mind, the proof applies Kakutani’s theorem to the sender’s best reply
correspondence. De�ne the function �(a) as follows:
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Recall that beliefs are continuous in the sender’s action choice, since P[y | a, ✓] is bounded
away from 0 on a compact set. We now show that if p̂

n

! p̂⇤, then e(p̂
n

) ! e(p̂⇤) (that is, e(p̂)
is continuous in p̂); since e�ort is chosen from a compact set and the receiver’s best response is
unique, we can ensure e(p̂
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) ! e⇤, passing to a subsequence if necessary by compactness of the
receiver’s action set. If e⇤ does not maximize E
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From this, we conclude that (††) is simply the sum and product of terms that are continuous
in a, and so:
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If b /2 �(a), then there exists some value � such that a deviation to � would result in a higher
objective than b, namely we would have:
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su�ciently large such that this inequality would also be satis�ed replacing b by b
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Furthermore, �(a) is nonempty and closed. To see this, note that A�M

is compact, and as we
have argued, the objective is continuous in ã. Since the set of maximizers of a continuous function
on a compact set is itself a compact nonempty set, we have that �(a) is compact.

To show that �(a) is convex, we show that the objective is concave in ã. Note that we can
write each term inside the sum over ✓ in (††) as:
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(a�er summing over states ✓). Furthermore, by Assumption 2, c
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is convex in ã, meaning that the
objective in the de�nition of � is concave in ã.

So suppose that a0, a00 are both in �(a) (noting that these must di�er only in the coordinates
A�M

; so in other words, supposing both a0 and a00 are maximizing choices of ã). Since �(a) is
concave ã, it follows that if this expression is maximized at a0 and a00, it must also be maximized at
every a000 = ↵a0 + (1� ↵)a00, as desired. Having demonstrated that the conditions for Kakutani’s
�xed point theorem are satis�ed, an equilibrium exists when a

M

is observed, for any choice of a
M

.

To conclude that a PBE exists, note that the above result shows that we can write the inferred
choice of a�M

as a function of a
M

, i.e. a�M

(a
M

), given some selection. (When there are two
dimensions, this selection is wri�en a2(a1)) Since AM

(or A1) is �nite, it follows that the image of
A1 under the sender’s utility is �nite as well. Its maximizer is achieved at an element of A1, and
so sender maximizes payo� by choosing this element of a1, yielding a PBE.

I now show the claim on mixed strategy equilibria. If there were multiple equilibria, then the
�rst order condition must hold for two values of ã, say ã1 < ã2. On the other hand, the receiver’s
beliefs do not depend on the choice of ã. Using expression for the sender’s bene�t in terms of
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But by the strictness of concavity or convexity, either the le� hand side is strictly positive or the
right hand side is strictly negative, with both being at least weakly so, a contradiction. Hence in
equilibrium, there can only be pure strategies.

Proof of Proposition 1. I provide a proof showing that (1) being positive implies higher choices
of a2; showing that lower choices are implied when this expression is negative follows identical
reasoning. First, note that the sender’s payo� (in equilibrium) can be wri�en:
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�e proof considers the �rst-order condition of this expression. Note that the �rst-order conditions
(as an equality for interior a2 and an inequality for a2 2 {minA2,maxA2}) must hold both under
full transparency, as well as under partial transparency (as per the proof of Lemma 1). �e
di�erence in these expression is that when a2 is unobservable, p̂ã does not not change as the
sender changes a2.

First consider limited transparency. Given a pure strategy PBE, the �rst order condition
following a correct inference by the receiver is:
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When a2 is observable, a term is added to the right hand side, which corresponds to the change in
the receiver’s belief about the state. �e action is higher whenever this term is positive. Using that
the beliefs are di�erentiable as a function of the action, chain rule gives us that the added term is:
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which is (1) (noting that the brackets re�ect that p̂ is a belief over many states).
Now, suppose the �rst order condition holds at an interior value of a2, say a⇤
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since this holds with equality when (1) is added. Note that the objective, as a function of a, is
concave in every coordinate under Assumptions 1-3, meaning that the le� hand side is decreasing
in a2. It follows that for the �rst order conditions to hold, the resulting a2 must be lower. Hence if (1)
is positive, then keeping a2 hidden lowers it, so that the choice of a2 is higher under observability,
as claimed. Similar reasoning reveals the same conclusion holds at boundary cases, although the
change need not be strict since the �rst order conditions only hold as inequalities in these cases
(with the direction of the inequality depending on which boundary is considered).

Proof of Lemma 3. Denote by a⇤2(a1) the equilibrium response of a2, �xing the choice of a1. By
Lemma 1, this is characterized by the �rst order condition:
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Using the fact that c(a1, a2) is convex in a2, and that P[y = 1 | (a1, a2), ✓] is concave in a2, it
follows that given an inferred choice of a2 must be higher when a⇤1 is chosen, and strictly so when
a2 is interior and the inequality is strict. On the other hand, if the �rst order condition holds as a
strict inequality, then a2 is chosen as an edge case, and the same reasoning implies that a2 could
only increase as well.

Proof of Proposition 2. �e key observation is that, even though transparency may increase a2
uniformly over all choices of a1, the losses from this increase in a2 is small relative to the bene�t
(to the receiver) from inducing a higher a1. �erefore, I �rst argue that it su�ces to show the
following, given the conditions of the Proposition:

• �e losses (to the sender) from keeping a1 = aobs1 are large, and

• �e losses (to both the sender and the receiver) due to higher a2 are small when a1 > aobs1 .

To see that this su�ces, �rst note that the receiver’s payo� function is continuous in a2, which
follows immediately from continuity assumption on the sender’s experiment choice. More pre-
cisely, since the proof of Lemma 1 shows that e�ort is continuous in posterior beliefs, as well as
that beliefs are continuous in a2, it follows that continuity of receiver’s payo�s are maintained,
given any (realized or conjectured) a2.

Since the receiver’s payo� increases in a1, holding �xed the choice of a2, there exists a discrete
increase in the receiver’s payo�s, say ↵, when the sender chooses a higher a1. �erefore, by
continuity of the receiver’s payo� function, we can �nd some " such that an increase from a1 to
↵
i

> aobs1 also delivers a higher payo�, whenever the increase in a2 is no more than " (since as
" ! 0 corresponds to the case where a2 does not increase).

Using these arguments, the proposition follows from the following observations: First, when
(1) is su�ciently large, the loss to the sender is large as well. And second, the change in a2 is
minimal when a1 increases, provided M
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relative to (1).
Both of these claims follow immediately from the same arguments as in Proposition 1 and

Lemma 3. Denoting the equilibrium response of a2 given an (observable) choice of a1 by a⇤2(a1),
given (1) su�ciently positive relative to @c

S

(aobs1 ,a2)
@a2

, Proposition 1 shows that a⇤2(aobs1 ) approaches
maxA2. By assumption, this lowers sender’s payo� relative to any other action, provided a2 is
chosen su�ciently close to aobs2 . Indeed, Lemma 3 shows that a⇤2 decreases when a1 increases. But
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in fact, inspecting the �rst order conditions, we see that if the second bulletpoint holds, then the
�rst order condition will be satis�ed at a value of a2 no more than " larger than aobs2 .

Hence as discussed above, the conditions ensure that the change in payo�s due to the (po-
tentially) higher a2 is small relative to the increase in payo�s due to higher a1. �is proves the
proposition. �e reasoning for the converse case is identical and hence omi�ed.

Proof of Lemma 4. I �rst use Lemma 2 to write the sender’s payo� from (⇤) as a function of the
receiver’s ex-post beliefs. Applying this Lemma shows that the Sender’s payo� is proportional to
p̂e(p̂). �us, to prove Lemma 4, it su�ces to show that p̂e(p̂) is convex. �is is immediate in the
case of polynomial e�ort costs, since then e(p̂) is proportional to p̂1/(n�1), so that p̂ · p̂1/(n�1) is
convex. More generally, take the second derivative of pe(p) and observe that it is equal to:

2e0(p) + pe00(p).

Since c
R

(e) is strictly convex, e0(p) > 0, which follows from the receiver’s �rst order condition:
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Since e(p) is strictly increasing, the assumptions on c000
R

(e) ensure that e00(p) � 0, and hence the
objective is convex.

In general, convexity of receiver e�ort by itself is not a strong enough assumption in order to
ensure that pe(p) is convex. To see this, suppose that:

c
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1� e ) c0
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2

p
1� e

> 0 ) c00
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(e) =
1

4(1� e)3/2
> 0.

In that case:
e(p) = max{0,� 1

4b2
R

p2
+ 1},

and observe that pe(p) is concave whenever e(p) > 0.
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B. MISCELLANEOUS

B.1. Counterexample to Lemma 1 when Assumptions are Violated

I brie�y demonstrate, by example, on the possibility of a failure of pure strategy equilibrium
existence when results cannot be classi�ed into positives and negatives. �e failure arises due to a
failure of concavity in the objective stated in Lemma 1. �is can be avoided to a certain extent
by taking a transformation of the index; hence the point of this example is to show that the real
technical issue arises when the “positive” and “negative” label depends on the experiment choice,
which is not �xed by taking a monotone transformation of a2. Note that in this example, the
feasible experiment set is convex.

Let |⇥| = |Y | = 2, with ⇥ = {�1, 1} and P[✓ = 1] = 1/2. Consider the following sender
preferences:

US

(p̂, ✓) = �p̂[✓ = 1] · ✓

And let:

P[Y = 1 | ✓ = 1] = P[Y = 0 | ✓ = �1] = 1� P[Y = 1 | ✓ = �1] = 1� P[Y = 0 | ✓ = 1] = a2.

with c(a) = a/4. In this example, in state ✓ = 1, the event Y = 1 is a positive result when a < 1p
2

is inferred (in which case it is evidence for the state ✓ = �1), and a negative result otherwise. In
state ✓ = �1, this is �ipped. So when a > 1p

2
, the concavity assumption is satis�ed in state ✓ = 1

but violated in state ✓ = �1, and the opposite is true when a < 1p
2
.

Write the payo� to the sender from an experiment a when it is inferred as ã (noting that a = ã

in equilibrium). By symmetry, the probability of a positive result 1/2 ex-ante, for any choice of
experiment. Hence the payo� is:

�1

4

a+
1

2

�
�ã2 ·

�
a2
�
+ ã2

�
1� a2

�
� (1� ã2)(1� a2) + (1� ã2) · a2

�
.

which reduces to:

�1

4

a+
1

2

�
�4ã2a2 + 2ã2 + 2a2 � 1

�
.

Given a conjecture of ã, sender chooses a to maximize the objective �a

4 + a2(1� 2ã2). Note
that if ã2 � 1

2 , this is maximized at a = 0, since the objective is negative for all other values of
a. �us, there is no pure strategy equilibrium where the sender chooses ã � 1p

2
. On the other

hand, if ã2 < 1
2 , then the second derivative of the objective is positive. Since this is a quadratic
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function, the optimum is on the boundary of the choice set, i.e., either 0 or 1, for any choice of ã.
Hence the only choice of a less than 1p

2
that could possibly be part of a pure strategy equilibrium

would a = 0. However, a = 1 is a best response to ã = 0, showing that there is no pure strategy
equilibrium.

B.2. Preferences over y

I comment on a modi�cation to the model where I allow for the sender to have preferences over y
itself. For simplicity, I consider the case where the payo�s are separable, and the sender obtains
an added bene�t of �

y

· y. from a positive result. In principle, this model still is amenable to the
belief-based approach, noting that any positive result leads to a higher belief and any negative
result leads to a lower belief. Hence this se�ing is as if there were a jump in the sender’s payo�
function at the prior (as commented on in Footnote 2). �at said, it is simplest to comment on this
case simply by inspection. In this case, it is immediate that the sender is incentivized to maximize
the biasing action in this case (whether higher informative actions will be taken depends on the
prior):

Proposition 3. As �
y

! 1, the sender’s choice of experiment converges to the one which maximizes
P[y = 1].

However, I also comment that transparency does not interact with the experiment choice
when all that ma�ers is whether the result is positive or not (and would similarly expect a limited
impact if this consideration itself was overwhelmingly dominant):

Proposition 4. Suppose the sender’s payo�s US

(e, p̂, y, ✓) is constant in e and p̂. �en the sender’s
experiment choice does not di�er depending on transparency regime.

�is is immediate since the (ex-ante) probability of an outcome y, conditional on the experiment,
does not depend on transparency regime, only on the realized experiment choice. Hence neither
do payo�s if all that ma�ers for the scientist is the probability of a positive result.

While this is theoretically immediate, it may seem surprising in the context of the application—
the preference for positive results appears so widespread that it is tempting to think it is intrinsic.
�is paper takes the view that the bene�t from a “positive” or “negative” result is endogenous
and depends on the belief movement. If a preference for positive results emerges entirely because
negative results are harder to publish, then this would suggest an interaction between having a
positive result and the other payo� terms. While this would add a non-convexity in the sender’s
payo� as a function of the receiver’s belief (due to the jump at the prior), provided it is small,
the main conclusions of the paper should not change drastically (albeit with some additional

10



notation). On the other hand, it would make it more unwieldy to characterize the preference
for information in certain places (e.g., Section 2), without changing intuition. It may also be
that positive results that are obtained “cheaply” (via bias) are less meaningful, but those that are
achieved “scrupulously” (via informativeness) are more meaningful. �is would suggest greater
interdependence between the cost function and the bene�t than what I have here. While these
observations may call for more empirical commentary to identify the source and nature of any
intrinsic preference for positive results, this is le� for future work.

B.3. Example Illustrating the Role of O�-path beliefs

�is section presents an example illustrating the role of the “correct inference assumption.” �is
example is a modi�ed version of Section 2. Speci�cally, consider payo�s exactly as in Section 2,
but suppose instead the signal distribution is as follows:

P[y = 1 | ✓ = T, a1 = 0, a2 = 0] = 2/5, P[y = 1 | ✓ = F, a1 = 0, a2 = 0] = 0,

P[y = 1 | ✓ = T, a1 = 0, a2 = 1] = 1/2, P[y = 1 | ✓ = F, a1 = 0, a2 = 1] = 1/6,

P[y = 1 | ✓ = T, a1 = 1, a2 = 0] = 3/4, P[y = 1 | ✓ = F, a1 = 1, a2 = 0] = 0,

P[y = 1 | ✓ = T, a1 = 1, a2 = 1] = 7/8, P[y = 1 | ✓ = F, a1 = 1, a2 = 1] = 2/3.

Intuitively, relative to the previous, we now let the a1 = 1 experiment be (severely) susceptible to
bias. Take c(a1, a2) = c · a1 + k · a2. Note that ⇡R

(a1, a2) is exactly as before for a 6= (1, 1). Recall
that in Section 2, if c 2 (⇡

R

(1, 0)� ⇡
R

(0, 0), ⇡
R

(1, 0)� ⇡
R

(0, 1)), then the sender would choose
a = (0, 0) under full transparency, but would choose a = (1, 0) in order to credibly show that
a2 6= 1.

However, whereas in Section 2 the a1 = 1 experiment is resistant to bias, here the a1 = 1

experiment is highly susceptible to bias. �is suggests complementarity goes in the opposite
direction, and thus that limited transparency would favor the a1 = 0 experiment instead.27 Now,
c > ⇡

R

(1, 0)� ⇡
R

(0, 0) implies the sender would rather choose a1 = 0 if a2 were inferred equal
to 0. Furthermore, if k is very large, then indeed a2(1) = a2(0) = 0, since the marginal bene�t to
a higher probability of y = 1 is �xed and �nite. I conclude that the limited transparency and full
transparency experiments coincide if c > ⇡

R

(1, 0)� ⇡
R

(0, 0) and k is su�ciently large, under the
belief re�nement in Lemma 1.
27To see this, �rst note that ⇡R(1, 1) < ⇡R(0, 1), and ⇡R(1, 0) � ⇡R(1, 1) > ⇡R(0, 0) � ⇡R(0, 1). In particular,
one can calculate that ⇡R(1, 1) =

29
414 ⇡ .07 < 1

12 . We have ⇡R(1, 0) � ⇡R(1, 1) =

5
26 � 29

414 ⇡ 0.12, and
⇡R(0, 0)� ⇡R(0, 1) =

1
8 � 1

12 ⇡ 0.04. As a result, for k = 0 and c 2 (⇡R(1, 1)� ⇡R(0, 1),⇡R(1, 0)� ⇡R(0, 0)),
the sender chooses a1 = 1 under full transparency but a1 = 0 under partial transparency.
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Now take k large and c 2 (⇡
R

(1, 0)� ⇡
R

(0, 0), ⇡
R

(1, 0)� ⇡
R

(0, 1)). With di�erent o�-path
beliefs, limited transparency can favor a1 = 1, despite the opposite complementarity. Consider
the following pro�le under limited transparency:

• Sender chooses (1, 0)

• Following an observation of a1 = 1, the receiver infers a2 = 0. Following an observation of
a1 = 0, the receiver infers a2 = 1.

If beliefs are not restricted o�-path, then the sender would not have any incentive to deviate from
(1, 0) given the receiver’s inference following an observation of a1 = 0. And while this inference
is inconsistent with an action pro�le where a1 = 0 is exogenously imposed on the sender, the
stated belief pro�le is valid if o�-path beliefs are not restricted. I thus conclude that, despite the
opposite complementarity from Section 2, again the more informative experiment is chosen in
this equilibrium under limited transparency.
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