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Online Appendix
A.  Proofs of Propositions

Proposition 2
PROOF:

Let’s assume there is an optimal path A for 79, an optimal path B for 7,
0 > 71, and MC (A, 7,C) < MC (B, 11,C), where C is a vector of the costs of
production. Note that MC (A, 9,C) > MC (A, 7,C) and by optimality of B:
MC (A,m,C)> MC (B, r,C). It follows that MC (A, 1,C) > MC (B, ,C),
which contradicts the initial assumption.

Lemma 1
PROOF:

Let path A with transportation quantity 7T'Q (A) be chosen for 7 = 7y and
path B with transportation quantity T'Q (B) be chosen for 7 = 71 and 79 >
71. Now assume that the transportation quantity is an increasing function of
7 and hence T'Q (A) > TQ (B). Then given the choice that the firm made
under 71: NTMC (B) +TQ(B)11 < NTMC (A) +TQ (A) 7 and under 7p:
NTMC (B)+TQ (B)19 > NTMC (A)+TQ (A) 19. Adding T'Q (B) (1o — 1) to
the first inequality, I get: NTMC (B)+TQ (B)170 < NTMC (A)+TQ (A) 1 +
TQ(B)(to—11) < NTMC (A)+TQ(A) 11 +TQ (A) (10 — 1) = NTMC (A) +
TQ(A)1 or NTMC (B)+TQ(B)11 < NTMC (A)+TQ (A) 71, which contra-
dicts the condition on optimality of A under 7.

Proposition 3
PROOF:

Let’s assume 79 > 71. Let A be an optimal path for 7 = 7y and transportation
quantity TQ (A) > 0. Then by Proposition 2 MC (A, 19) > MC (A, 7). Let B an
optimal path for 71, then by definition of optimal path MC (A, 71) > MC (B, 1),
and hence MC (A, 19) > MC (B, 1).

Proposition 4
PROOF:

Let A be an optimal path for 79, B an optimal path for 7, 79 > 71, and
A # B. By definition of optimality and because of the uniqueness of opti-
mal paths, MC (A,7) < MC(B,7) and MC (A,71) > MC (B,m1). From
Lemma 1 nTQ(A) < mTQ (B). Assume NTMC(A) < NTMC (B), then
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MC (A,71) = NTMC (A)+nTQ(A) < NTMC (B)+nTQ (B)=MC (B, 1),
which contradicts the optimality of B under 7.

B.  Incomplete Trees

To write down the problem for an arbitrary tree, I need to enumerate production
nodes. Every node has a unique index {i,b} that represents at what stage i the
part is produced and to what branch b it belongs. Production costs for a part
from branch b, produced on stage 7 in country k, are then a;p k.

Stage ¢ = 1 corresponds to the most downstream stage of production and ¢ = N
denotes the most upstream stage. In case two or more of the intermediate goods
are assembled together, each of the corresponding nodes gets the same stage
number ¢; in addition, each of these nodes gets branch index b, which was not
previously assigned to another branch.

I define n; as the last stage of branch b; I call n; the length of branch b. In
addition, for each stage ¢ I introduce an assembly set );;, which is the set of
branch indexes b of all parts produced on stage i + 1, connected to stage {i,b}.
vip is a branch of a part produced at stage ¢ — 1, a node that {7,b} is connected
to. B; is a set of all branches present at stage i. I present an example of such
enumeration in Figure .1.

b={4} b={4} b={4}
Ves={4} Vsa={4} Vas={3}
Qer={@} | Qsa={a} | Quo={4} b=(3}

o o @ i

Q33={4,5}
- b={1} b={1}
b={5} b={5} b={5} z h

Qes={@) | Qss={5} | Qas={5} .
o0 0 . o -0
Q3={@}

i=6 i=5 i=4 i=3 i=2 i=1
Be={4,5} | Bs={4,5} | Bs={4,5} | B3={2,3} B,={1} B.={1}

FIGURE .1. INCOMPLETE TREE NOTATION

max{np} K
MC = min Z Z (Z 1 (C@b = k) aLb,k + T (Ci,b7 ci—le‘,b)) .

{ein} i=1 beEB; \k=1
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This expression differs from (4) due to more complex indexing structure of an
incomplete tree. The corresponding Bellman equation is

K
Vip (cip) = min ; L(cip = k) aipp + z;ﬁ: [TT (cips cit1,) + Vi, (cir,0)]
= isb
C. Clustering with Iceberg Trade Costs
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FIGURE .2. CLUSTERING AND TREE LENGTH: ICEBERG TRADE COSTS

D. Elasticities
E.  Endogenous Wages

The problem presented above is the model of absolute advantage as there is no
labor market. With a given supply of labor in each country L; and endogenous
wages that are determined through labor market clearing conditions, all countries
will produce some parts no matter what production costs are.! I normalize the
wage in country 1 to w; = 1. I assume that labor supply is perfectly inelastic
and the firm has constant returns to scale production technology. The problem
of every firm then looks like

L As long as trade costs are not too high for a given firm.
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FIGURE .3. CLUSTERING AND THE NUMBER OF COUNTRIES: ICEBERG TRADE COSTS

N Mt
(1) MC= minz Z (wjl (cip =k)aipp+71T (ci,b, ci_”%O) ,

p
[ -
and a firm’s labor demand per unit produced is

i—1

N
Z 1(cip =k)aipy for Ve € {1,...,K}.
=1

g

i
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Here for simplicity I assume that transportation services are performed by in-
dependent transport companies and do not affect domestic and foreign labor

markets.

LEMMA A1l: Demand of the firm from country i Lp; for labor in country k is
a nonincreasing function of wy.

PROOF:

Let the wage in country k decrease, while all other wages remain constant:
w,? > w,]f and w;‘#k = ij;ék = wj»,. Let A and B be optimal paths under wage
schedules w* and w?. In case A = B, LA = L Di- Now consider the case A # B.
Then because of the optimality of A and B: (a) MC (A,w ) < MC (A, wP)
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Share of Related Nodes with the Same Location

FIGURE .4. DIRECT AND INDIRECT CLUSTERING: ICEBERG TRADE COSTS

and (b) MC (B,w?) < MC (A,w?). Let A™T = 7VT (A) — 7VT (B), and
Al = > ik W) (Lf‘)j - LlB)j). Then (a) and (b) can be rewritten as: Lilwil —
L/,ﬂBch4 + A+ ATVT <0, and L;?w}? — LEwB + AL+ A™VT > 0, subtracting the
first inequality from the second obtains: (L Dk~ Lgk) (wl{ﬁB — ka) > 0, and then
Ly, < LB,

Note that if the firm changes its optimal path, then Lpy is decreasing in wy.

PROPOSITION Al: There exists a wage schedule that clears the labor market.
In a two-country case, this schedule is unique.

PROOF:

FExistence:

The world economy can be considered as an exchange economy with M agents,
where labor supply in country k is the endowment of good k and wage in country
k is the price of this good. Then from Lemma Al demand of each agent for each
good is nondecreasing in price of this good, so by proposition 17.C.1 in Mas-Colell
et al. (1995) an equilibrium exists.

Uniqueness for the case of two countries:

A firm’s relative demand for labor LL is a nonincreasing function of the relative
wage w. Every firm takes the wage as given, but decisions of the firm determine
the wage through market clearing condition. Here once again I apply the revealed
preferences argument. Let’s assume there is path A with Zf\i 1ciawi = Rwa
and ZZ]L (1—¢),api = Rpa that was chosen for w = wg and there is path
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B with sz\il can; = Rwp and Zf\il (1 —-c¢),asi = Rgp that was chosen for
w = wy; wy > wy and Ryp > Rwa. Let function NPC (Y) be a value of
nonproduction costs for path Y, then given the choice that the firm made under
wo: NPC(A) + woRwa + Rva < NPC (B) + woRwp + Rpp and under w;:
NPC (A)+w1RWA+REA > NPC (B)+w1RWB+REB~ Adding Ry 4 (wl — wo)
to the both parts of the first inequality, I get: NPC (A) + wiRwa + Rga <
NPC (B) 4+ woRwp + REp + Rwa (w1 —wp) < NPC (B) +wiRwp + Regp <
NPC (B)+wiRwp+Rpp or NPC (A)+wiRwa+Rpa < NPC (B)+wiRwp+
Rgp, which contradicts the condition of optimality of B under w;.

For the case of multiple countries, proof of uniqueness of the equilibrium is
nontrivial: decrease in the wage in one country can increase demand for labor in
another country through the bridge FDI channel, similar to Proposition 8. As a
result, the gross substitute property does not hold, and the uniqueness cannot be
proven using the approach of Allen, Arkolakis and Li (2015).
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FIGURE .5. RESHORING: ICEBERG TRADE COSTS
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FIGURE .6. TRADE ELASTICITIES AND TREE ORDER
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FIGURE .7. TRADE ELASTICITIES AND TREE ORDER: ICEBERG TRADE COSTS
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FIGURE .8. TRADE ELASTICITIES AND TREE LENGTH
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FIGURE .9. TRADE ELASTICITIES AND TREE LENGTH: ICEBERG TRADE COSTS
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FIGURE .10. TRADE ELASTICITIES AND THE NUMBER OF COUNTRIES
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FIGURE .11. TRADE ELASTICITIES AND THE NUMBER OF COUNTRIES: ICEBERG TRADE COSTS



