
Online appendix: Platform governance
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This Online Appendix contains omitted details from the main paper and the details of extensions in

Section 6.

A Discrete governance

In this section, we consider the case in which the design choice a is not a continuous variable. In what

follows, we replicate the results in Sections 3 - 4. Let Θ ⊆ Rn be a finite subset of n-dimensional real

vector space. Each design choice is denoted as a vector a ∈ Θ and corresponds to a given level of gross

transaction value V (a) and markup M(a).

Given that the choice set is finite, we can equivalently reformulate the design problem as directly

choosing a pair of markup level and transaction value (M(a), V (a)), or (m, v(m)), as in the analysis in

the main text. In cases in which a given M(a) corresponds to multiple possible levels of V (a), we can

select the highest V (a) among them without loss of generality.

Given the reformulation, we note that the proofs of Proposition 1, 3, 5, and 6 in the main text do not

rely on a being a continuous variable, except when establishing the strict inequalities (in which we have

explicitly used the first-order conditions). Therefore, these results carry over immediately with weak

inequalities. As for Propositions 2 and 4, the following propositions deliver similar insights:

Proposition A.1 (Exogenous proportional fee) Suppose the platform charges an exogenous proportional

fee r. There exist thresholds c̄l and c̄h, where 0 < c̄l ≤ c̄h, such that:

� If c < c̄l, then mp ≥ mw.

� If c > c̄h, then mp ≤ mw.

Proof. From

Π (m) = r

(
c

1− r
+m

)
Q

(
v (m)−m− c

1− r

)
W (m) =

(
c

1− r
+m− c

)
Q

(
v (m)−m− c

1− r

)
+

∫ v(m)−m− c
1−r

−∞
Q (t) dt,

we make the following two observations: (i) v (m)−m < v (mp)−mp for all m > mp; and (ii) v (m)−m <

v (mw) −mw for all m > mw. Otherwise, mp and mw cannot be maximizers. Consider the following

function:

ψ(x) ≡ −cQ (x) +

∫ x

−∞
Q (t) dt, (A.1)

the derivative of which is ∂ψ
∂x =

(
Q(x)
Q′(x) − c

)
Q′(x). Rewrite the welfare function as

W (m) =
1

r
Π(m) + ψ

(
v (m)−m− c

1− r

)
.

Let mh ≡ arg maxm {v(m)−m} and ml ≡ arg minm {v(m)−m}, both of which are well defined by the

compactness of the domain and the continuity of v (m)−m. Let c̄i, i ∈ {l, h} be the solution to

Q(v(mi)−mi − c̄i

1−r )

Q′(v(mi)−mi − c̄i

1−r )
= c̄i.
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The existence and uniqueness of c̄i follows from the intermediate value theorem and log-concavity of Q.

Suppose c < c̄l. This implies ∂ψ
∂x > 0 for all x ≥ v(ml) − ml − c

1−r , i.e., ψ
(
v (m)−m− c

1−r

)
is

increasing for all possible m. Given that we know v (m) −m < v (mp) −mp for all m > mp, it follows

that

W (m) <
1

r
Π(m) + ψ

(
v (mp)−mp − c

1− r

)
≤W (mp)

for all m > mp, implying mw ≤ mp.

Suppose c > c̄h. This implies ∂ψ
∂x < 0 for all x ≤ v(mh) −mh − c

1−r , i.e. ψ
(
v (m)−m− c

1−r

)
is

decreasing for all possible m. Given that we know v (m)−m < v (mw)−mw for all m > mw, it follows

that

Π(m) = rW (m)− rψ
(
v (m)−m− c

1− r

)
< rW (mw)− rψ

(
v (mw)−mw − c

1− r

)
= Π(mw),

implying mp ≤ mw.

Proposition A.2 (Endogenous proportional fee) Suppose the social planner can control the platform’s

governance design, but cannot control the proportional fee set by the platform. There exist thresholds c̃l

and c̃h, where 0 < c̃l ≤ c̃h, such that:

� If c < c̃l, then mp ≥ msb.

� If c > c̃h, then mp ≤ msb.

Proof. We first make the following two observations regarding msb:

Claim 1: For all m > msb, we have r̃ (m) < r̃
(
msb

)
. By contradiction, suppose there is some

m′ > msb such that r̃ (m′) ≥ r̃
(
msb

)
. Using these two inequalities, (12) implies v (m′) − pr̃(m

′) ≥
v
(
msb

)
− pr̃(msb). From the welfare function, this implies

W̃ (m′) ≥
(

c

1− r̃(m′)
+m′ − c

)
Q
(
v
(
msb

)
− pr̃(msb)

)
+

∫ v(msb)−pr̃(msb)

−∞
Q (t) dt

> W̃ (msb),

a contradiction, which proves the claim.

Claim 2: For all m > msb, we have v (m)− pr̃(m) < v
(
msb

)
− pr̃(msb). By contradiction, suppose

there is some m′ > msb such that v (m′) − pr̃(m′) ≥ v
(
msb

)
− pr̃(msb). Then, (15) implies pr̃ (m′) >

pr̃(m
sb). From the welfare function, this implies W (m′) > W (msb), a contradiction, which proves the

claim.

To prove the proposition suppose c > c̃h, where

c̃h ≡ Q(v(mh)−mh)

Q′(v(mh)−mh)
(A.2)

and mh ≡ arg maxm {v(m)−m}. In this case, ψ (x), as defined in (A.1), is decreasing for all x ≤
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v(mh)−mh. For all m > msb, we have

Π̃(m) = r̃ (m) W̃ (m)− r̃ (m)ψ (v (m)− pr̃(m))

< r̃
(
msb

)
W̃ (m)− r̃

(
msb

)
ψ (v (m)− pr̃(m))

< r̃
(
msb

)
W̃ (m)− r̃

(
msb

)
ψ
(
v
(
msb

)
− pr̃(msb)

)
< r̃

(
msb

)
W̃ (m)− r̃

(
msb

)
ψ
(
v(mh)−mh

)
= Π̃(mw).

where the first inequality is due to Claim 1, the second inequality is due to Claim 2, and the last inequality

is due to v
(
msb

)
− pr̃(msb) = v

(
msb

)
−msb− c

1−r ≤ v(mh)−mh (by Claim 2 and the definition of mh).

We conclude that mp ≤ msb.

To establish the existence of the lower threshold c̃l, it suffices to consider the case of c → 0. When

c→ 0, we first note that ψ (x), as defined in (A.1), is increasing for all x. Moreover, c→ 0 implies (12)

r̃ (m) → 1 and Π̃(m) → mQ(v (m) −m), which implies that v (m) −m < v (mp) −mp for all m > mp

(otherwise mp is not a maximizer). So,

W̃ (m) → Π̃(m) + ψ

(
v (m)−m− c

1− r

)
≤ Π̃(m) + ψ

(
v (mp)−mp − c

1− r

)
≤W (mp)

for all m > mp, implying msb ≤ mp.

B Derivations of Examples 1-3

This section provides the derivations of the examples in Section 2. In what follows, we do not specify the

exact fee instrument used by the platform. Instead, we focus on deriving how the platform’s governance

design influences the buyer-seller interactions in each of the examples.

B.1 Example 1: Variety choice by the platform

Example 1 can be summarized with the following timing: (i) The platform announces the number of

sellers N − a that it will admit; (ii) Sellers and buyers decide whether to enter the platform; (iii) Sellers

set their prices; (iii) N − a sellers are admitted, and the buyer observes the prices and match values of

these sellers and purchases accordingly. We focus on symmetric pure strategy Nash equilibrium in which

all sellers set the same price p (for any N − a chosen by the platform).

Let Q be the number of participating buyers, which is exogenous from individual sellers’ point of

view. To derive seller pricing, consider a deviating seller i who sets price pi 6= p. For each seller, the

effective demand is

Pr

(
xi − pi ≥ max

j 6=i
{xj − p}

)
=

∫ ∞
−∞

(1− F (x− p+ pi)) dF (x)N−a−1.

The demand for seller i’s product is

Qi (pi) = Q×
∫ ∞
−∞

(1− F (x− p+ pi)) dF (x)N−a−1.
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From the profit function (pi − c)Qi (pi), we can derive the symmetric equilibrium price as

p = c+M (a) ≡ c+
1

(N − a)
∫∞
−∞ f (x) dFN−a−1 (x)

.

B.2 Example 2: Information design by the platform

Example 2 can be summarized with the following timing: (i) The platform announces the information

structure parameterized by a ∈ [0, 1]; (ii) Sellers and buyers decide whether to enter the platform; (iii)

Sellers set their prices; (iii) Each buyer observes the realized signal and prices and purchases accordingly.

Let s̄ be the signal received by the buyer who is indifferent between seller 1 and 2, i.e., p1+tE(x1|s̄) =

p2 + tE(x2|s̄), or s̄ = 1
2 + p2−p1

ta . Given s is drawn from uniform distribution over [0, 1], seller 1’s demand

is Pr (s < s̄) = 1
2 + p2−p1

ta . Therefore, the price competition is the same as Example 1, except that the

transportation cost parameter is replaced by ta. It follows that p = c+ ta. To ensure that the market is

fully covered, we assume V0 − tE(x1|s = 1/2)− p > 0 for all a, or V0 > c+ 3t
2 .

From a buyer’s ex-ante perspective, with probability a the signal is informative and the buyer gets the

preferred product, with expected mismatch cost t/4; With probability 1− a the signal is uninformative

so that the buyer effectively gets a randomly chosen product, with expected mismatch cost t/2; Hence,

the ex-ante expected mismatch cost is t(2−a)
4 , as stated in the main text.

B.3 Example 3: Quality control by the platform

Example 3 can be summarized with the following timing: (i) The platform announces a; (ii) Buyers and

sellers decide whether to enter the platform; (iii) Sellers with qi ≥ 1 − a set their prices, and buyers

who have has entered the platform carry out sequential search. We focus on symmetric perfect Bayesian

equilibria (PBE) in which all sellers set the same price p. As is standard in the search literature, buyers

keep the same (passive) beliefs about the distribution of future prices on and off the equilibrium path.

The following derivation follows from Eliaz and Spiegler (2011). We first derive buyers’ search

strategy for each given a set by the platform. Define the reservation value V (a) as the solution to

E (qi|qi ≥ 1− a)

∫ ε̄

V

(ε− V ) dF (ε) = s. (B.1)

The left-hand side of (B.1) represents the incremental expected benefit from one more search, while the

right-hand side represents the incremental search cost. There is, at most, one solution to (B.1), since

the left-hand side is strictly decreasing in v.

It is well known in the consumer search literature (Wolinsky, 1986; Anderson and Renault, 1999) that

buyers’ optimal search rule in this environment is stationary and described by the standard cutoff rule.

When searching, each buyer employs the following strategy: (i) she stops and buys form seller i if the

product is not defective and εi−pi ≥ V (a)−p; and (ii) she continues to search the next seller otherwise.

Following the standard result, the buyer’s expected surplus from initiating a search is V (a)− p. Then, a

buyer with intrinsic participation cost d enters the platform if and only if d < p− V (a). Provided that

search cost is not too large, there is a symmetric price equilibrium in which a strictly positive measure

of buyers join the platform.

Compared with a standard search model, notice from (3) that a search pool with a higher expected

quality E (qi|qi ≥ 1− a) is analogous to a lower effective search cost for buyers. This reflects that each

buyer searches less and consequently incurs a lower total expected search cost of s/E (qi|qi ≥ 1− a)

before reaching a non-defective match. Given that E (qi|qi > 1− a) decreases with a, a more relaxed

quality standard set by the platform is analogous to increasing the effective search cost of buyers. Thus,

it follows that V (a) is a decreasing function of a.
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From the buyer search rule above, the derivation of demand is straightforward. The mass of buyers

initiating search is Q(V (a)− p), which is exogenous from each firm’s point of view. Conditional on these

buyers, the demand of a deviating firm i with type qi follows the standard search model and is given by

qi (1− F (V (a)− p+ pi))

∞∑
z=0

F (V (a))
z

=

(
1− F (V (a)− p+ pi)

1− F (V (a))

)
qi.

The log-concavity assumption on 1− F ensures that the usual first-order condition determines a unique

optimal price. The symmetric equilibrium price is given by p = c+ 1−F (V (a))
f(V (a)) .

C Endogeneity of fee instrument

We prove Proposition 7 stated in the main text. Recall that the platform’s optimal fee instrument

is a two-part tariff with a subsidy on buyer participation. It optimally sets its governance design at

mp+ = m∗ to maximize v (m) and then adjusts the transaction-based fee components and the buyer-

side participation subsidies accordingly to achieve the maximal monopoly profit, which we denote as

Π∗ ≡ (p∗ (m∗)− c)Q (v (m∗)− p∗ (m∗)).

Meanwhile, the social planner optimally restricts the platform to charge sellers a pure lump-sum

participation fee. Notice that allowing the platform to impose participation fees on both sellers and

buyers is ineffective, because the platform would set a positive buyer participation fee in an attempt

to replicate Π∗, which results in deadweight losses. The welfare function under the restriction of seller

participation fees is

W̃ (m) = mQ (v (m)−m− c) +

∫ v(m)−m−c

−∞
Q (t) dt.

For all m > m∗, we have

W̃ (m) ≤ mQ (v (m∗)−m− c) +

∫ v(m∗)−m−c

−∞
Q (t) dt

< m∗Q (v (m∗)−m∗ − c) +

∫ v(m∗)−m∗−c

−∞
Q (t) dt

= W̃ (m∗) ,

which implies msb+ ≤ m∗ = mp+.

D Costly governance

The analysis in this section corresponds to Section 6.2 of the main text. We focus on extending the

results in Section 4 to the case in which the platform’s fixed cost is an increasing and convex function

K = K(v(m)) ≥ 0. Denote k ≥ 0 as the derivative of K with respect to its argument, where k is

increasing by the convexity assumption.

Proposition D.1 (Endogenous per-transaction fees) If value and markup are always positively corre-

lated, then Proposition 3 continues to hold.

Proof. If we rewrite the profit function in terms of price, we have

Π̃ (m) = (pτ̃ (m)− c−m)Q (v (m)− pτ̃ (m))−K(v(m)),
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where pτ̃ (m) is implicitly defined by pτ̃ (m) = c+m+ Q(v(m)−m−c−τ̃)
Q′(v(m)−m−c−τ̃) . Recall that the log-concavity of

Q implies that v(m)− pτ̃ (m) is increasing in m if and only if v (m)−m is increasing in m.

We first claim that v(m) − pτ̃ (m) ≤ v(mp) − pτ̃ (mp) for all m < mp . By contradiction, suppose

there is some m′ < mp such that v(m′) − pτ̃ (m′) > v(mp) − pτ̃ (mp); then the definition of pτ̃ implies

pτ̃ (m′)−m′ > pτ̃ (mp)−mp. Given that v(m) is increasing, K(v (m′)) ≤ K(v (mp)), and so

Π̃ (m′) > (pτ̃ (mp)− c−mp)Q (v(mp)− pτ̃ (mp))−K(v (m′))

≥ Π̃ (mp) ,

which contradicts the definition of mp being a maximizer. Hence, the claim is proven.

From the welfare function,

W̃ (m) = Π̃ (m) +mQ (v (m)− pτ̃ (m)) +

∫ v(m)−pτ̃ (m)

−∞
Q (t) dt.

the proven claim implies W̃ (m) < W̃ (mp) for all m < mp, implying msb ≥ mp. The final step in ruling

out the equality is the same as the corresponding step in the proof of Proposition 3, and hence omitted

here.

Proposition D.2 (Endogenous proportional fee) Suppose the social planner can control the platform’s

governance design, but cannot control the proportional fee set by the platform. Suppose welfare function

(D.1) is unimodal, and denote

Ψ̃(m) ≡
(
pr̃
r̃ + K

r̃2

)
dr̃
dm

dpr̃
dm −

dv
dm

.

� Suppose c ≤ Q(v(mp)−pr̃(mp))
Q′(v(mp)−pr̃(mp)) (1 + Ψ̃(mp)). If value and markup are always negatively correlated,

then mp ≥ msb.

� Suppose c ≥ Q(v(mp)−pr̃(mp))
Q′(v(mp)−pr̃(mp)) (1 + Ψ̃(mp)). If value and markup are always positively correlated,

then mp ≤ msb.

Proof. Recall

Π̃ (m) = r̃ (m) pr̃(m)Q (v (m)− pr̃(m))−K(v (m)),

where pr̃(m) is defined in (15). The welfare function is

W̃ (m) = (pr̃(m)− c)Q (v (m)− pr̃(m))−K(v (m)) +

∫ v(m)−pr̃(m)

−∞
Q(t)dt (D.1)

=
Π̃ (m) +K(v (m))

r̃ (m)
−K(v (m))− cQ (v (m)− pr̃(m)) +

∫ v(m)−pr̃(m)

−∞
Q(t)dt

and
dW̃

dm
=

1

r̃

dΠ̃

dm
+

(
1− r̃
r̃

)
k
dv

dm
+

(
Q

Q′
(1 + Ψ̃(mp))− c

)(
dv

dm
− dpr̃
dm

)
Q′.

Suppose c ≤ Q(v(mp)−pr(mp))
Q′(v(mp)−pr(mp)) (1 + Ψ̃(mp)) and dv

dm ≤ 0 for all m. Lemma 4 implies dv
dm −

dpr̃
dm ≤ 0.

Hence, dW̃
dm |m=mp ≤ 0 whenever dΠ̃

dm |m=mp = 0 and dW̃
dm |m=mp < 0 whenever dΠ̃

dm |m=mp < 0. The

unimodality of W̃ (m) implies msb ≤ mp as required.

Suppose c ≥ Q(v(mp)−pr(mp))
Q′(v(mp)−pr(mp)) (1 + Ψ̃(mp)) and dv

dm ≥ 0 for all m. If ( dvdm −
dpr̃
dm )|m=mp ≤ 0, then we

have dW̃
dm |m=mp ≥ 0 whenever dΠ̃

dm |m=mp = 0, and dW̃
dm |m=mp > 0 whenever dΠ̃

dm |m=mp > 0. These imply
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msb ≥ mp. Suppose instead that ( dvdm −
dpr̃
dm )|m=mp > 0; then we get from (D.1):

dW̃

dm
|m=mp = (pr̃(m)− c)Q′

(
dv

dm
− dpr̃
dm

)
|m=mp + (Q− k)

dv

dm
|m=mp > 0,

and the unimodality of W̃ (m) implies msb ≥ mp.

Proposition D.3 (lump-sum fees) If value and markup are always negatively correlated, then Proposi-

tion 5 continues to hold.

Proof. The platform’s profit is Π̃ (m) = mQ (v (m)−m− c)−K(v(m)), while the welfare function is

W̃ (m) = Π̃ (m) +

∫ v(m)−m−c

−∞
Q(t)dt.

We first claim that v(m)−m ≤ v(mp)−mp for all m > mp. By contradiction, suppose there is some

m′ > mp such that v(m′) −m′ > v(mp) −mp. Given that v(m) is decreasing, K(v(m′)) ≤ K(v(mp)),

and so Π̃ (m′) > mpQ (v(mp)−mp)−K(v(m′)) ≥ Π̃ (mp), which contradicts the definition of mp being

a maximizer thus proving the claim.

From the welfare function, the proven claim implies that W̃ (m) < W̃ (mp) for all m > mp, and so we

have msb ≤ mp, as required. The final step in ruling out the equality is the same as the corresponding

step in the proof of Proposition 5, and hence omitted here.

Proposition D.4 (Two-part tariff) If value and markup are always negatively correlated, then Propo-

sition 6 continues to hold.

Proof. Recall from the proof of Proposition 6 that we denote the profit-maximizing induced price as

p̃(m) = max {m+ c, p∗ (m)} (the existence of the fixed cost does not affect the optimal pricing). Denote

m∗k ≡ arg max
m

Π̃ (m)

= arg max
m
{(p∗ (m)− c)Q (v(m)− p∗ (m))−K(v(m))} .

Similar to the proof of Proposition 6, we denote m̂ as the solution to m̂+ c = p∗ (m̂). By construction,

p̃(m) = p∗ (m) for all m > m̂ given that v(m) is decreasing for all m.

Case 1. If c ≤ p∗ (m∗k)−m∗k, then p∗ (m∗k) is implementable. We know by the envelope theorem that

Π̃ (m) is maximized at mp = m∗k. For all m > mp, we know p̃(m) = p∗ (m) because mp = m∗k > m̂. We

first claim that v(m)−p∗ (m) ≤ v(mp)−p∗ (mp) for all m > mp. By contradiction, suppose there is some

m′ > mp such that v(m′)−p∗ (m′) > v(mp)−p∗ (mp); then the definition of p∗ implies p∗(m′) > p∗(mp).

Therefore,

Π̃ (mp) < (p∗ (m′)− c)Q (v(m′)− p∗ (m′))−K(v (mp))

≤ Π̃ (m′) ,

where the second inequality is due to K(v(m′)) ≤ K(v(mp)) given that v(m) is decreasing. This con-

tradicts the definition of mp being a maximizer. Hence, the claim is proven. Then, from the welfare

function, the proven claim implies W̃ (m) < W̃ (mp) for all m > mp, and so we have msb ≤ mp.

Case 2. Suppose c > p∗ (m∗k) − m∗k, then from the preceeding case we know that p∗ (m∗k) is no

longer implementable. Similar to the proof of Proposition 6, we know mp < m̂ and p̃(mp) = c+mp. We

first claim that v(m)− p̃ (m) ≤ v(mp)−mp− c for all m > mp. By contradiction, suppose there is some
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m′ > mp such that v(m′)− p̃ (m′) > v(mp)−mp−c. The definition of p̃ implies p̃ (m′) ≥ m′+c > mp+c.

So,

Π̃ (m′) > (mp − c)Q (v(mp)−mp)−K(v(m′)) ≥ Π̃ (mp) ,

which contradicts the definition of mp being a maximizer. Hence, the claim is proven. Then, from

the welfare function, the proven claim implies that W̃ (m) < W̃ (mp) for all m > mp, and so we have

msb ≤ mp. The final step in ruling out the equality is the same as the corresponding step in the proof

of Proposition 6.

E Consumer surplus benchmark

For all given fee instruments, we know that mbs = arg max {v(m)− p(m)}. Following the previous anal-

ysis, when the platform uses per-transaction fees (regardless of whether it is exogenous or endogenous),

mp = arg max {v(m)− p(m)}, so mp = mbs. Likewise, if the platform uses lump-sum fees, two-part

tariffs, or exogenous proportional fees, from the expressions of the platform’s profit function it is obvious

that mp ≥ mbs because a higher m increases the platform’s margin.

The only non-obvious case is when the platform uses endogenous proportional fees. Let mbs =

arg max {v(m)− pr̃(m)}. If mp = m̄, then mp ≥ mbs trivially holds. If mp < m̄, then either it is an

interior solution or mp = m. In both cases, from (8) we have dv
dm |m=mp ≤ 1 − Q

pr̃Q′
|m=mp . Recall from

Lemma 4 that dv
dm −

dpr̃
dm < 0 whenever dv

dm ≤ 1− Q
pr̃Q′

. Hence, we have
(
dv
dm −

dpr̃
dm

)
|m=mp < 0, implying

mp ≥ mbs.
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