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Uniqueness of equilibrium with convex cost

In this section we show that Theorem 1 holds for more general cost of effort. We
denote the cost function of effort as c(e), which is the same for high and low ability
contestants. The cost function is assumed to be twice differentiable on the non-negative
reals, strictly increasing and weakly convex, with the cost of zero effort being zero.

Lemma A.1. In any equilibrium and for any history η2, BR`
i2(σ∗, η2)∪BRh

i2(σ∗, η2) =
[0, x∗] for i = s, w and x∗ > 0. Equilibrium output distributions, H∗2s(x|η2), L∗2s(x|η2),
H∗2w(x|η2), and L∗2w(x|η2), are continuous on (0, x∗] and for x ∈ BR`

i2(σ∗, η2) and x′ ∈
BRh

i2(σ∗, η2), then x ≤ x′.

Proof. The proof follows in three steps:

(1) We first show there is no output at which both contestants have an atom and if a
contestant has an atom, it is at zero. It follows that F ∗i2(x|η2) are continuous on (0,∞)
for i = s, w and any η2.

Assume both contestants produce x with positive probability. Because the cost of
effort is continuous, either contestant can improve payoffs by producing output slightly
above this atom. Then x is not a best response of that contestant, a contradiction.

Assume that contestant i produces x > 0 with positive probability. Then by the con-
tinuity of the cost function in output, there is a δ > 0 such that for all x̂ ∈ (x − δ, x),
x̂ 6∈ BRθ

−i2(σ∗, η2) for θ = `, h. This implies, that contestant i would do better by
playing x− δ/2, and therefore x 6∈ BRθ

i2(σ∗, η2), a contradiction.

(2) Next, if x̂ > 0 is not a best response for any ability of one of the contestants, then
for all x > x̂, x is not a best response for either type of either contestant.

Step (1) implies that equilibrium payoffs are continuous over positive outputs. Given
x′ 6∈ BR`

i2(σ∗, η2)∪BRh
i2(σ∗, η2), for some i = s, w, ∃x̃h, x̃` for which E[πi2(x̃h)|ah, σ∗, η2] >

E[πi2(x′)|ah, σ∗, η2] + ε and E[πi2(x̃`)|a`, σ∗, η2] > E[πi2(x′)|a`, σ∗, η2] + ε. Then, every
output in the neighborhood of x′ in this neighborhood cannot be a best response of
either type of contestant i, and therefore also cannot be a best response for any type
of contestant −i, who could improve expected payoffs by lowering output.

Define X∗ = {x|x > x̂ and x ∈ BR`
i2(σ∗, η2) ∪ BRh

i2(σ∗, η2)}. Let x∗ = inf{X∗}.
Then, there is a neighborhood below x∗ for which all outputs are not best responses
for any ability type of either contestant. By continuity of payoffs, this would imply
that there is an x ∈ X∗ that gives lower expected payoffs than x̂ for both types of each
contestant, a contradiction. Therefore, x∗ does not exist and X∗ is empty. This implies
that sup{BR`

s2(σ∗, η2) ∪ BRh
s2(σ∗, η2)} = sup{BR`

w2(σ∗, η2) ∪ BRh
w2(σ∗, η2)} ≡ x∗ and
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the combined best response sets of each contestant is [0, x∗].

(3) In any equilibrium, for x ∈ BR`
i2(σ∗, η2) and x′ ∈ BRh

i2(σ∗, η2), then x ≤ x′.
Assume otherwise, ∃x ∈ BR`

i2(σ∗, η2) and x′ ∈ BRh
i2(σ∗, η2), with x > x′. Then

E[πi2(x)− πi2(x′)|a`, σ∗, η2] = p2(F ∗i2(x|η2)− F ∗i2(x′|η2))− (c(x)− c(x′)) ≥ 0.

Because the cost function is increasing and weakly convex, and x > x′, then

E[πi2(x)− πi2(x′)|ah, σ∗, η2] = p2(F ∗i2(x|η2)− F ∗i2(x′|η2))− (c(x/ah)− c(x′/ah)) > 0.

This contradicts x′ ∈ BRh
i2(σ∗, η2).

Proof of Proposition 7

From Lemma A.1, there are x∗s and x∗w such that x∗i = sup{BR`
i2(σ∗, η2)} = inf{BRh

i2(σ∗, η2)},
for i = s, w, and x∗ ≡ sup{BRh

i2(σ∗, η2)} which is the same for i = s, w.
Each contestant must be indifferent between all x ∈ (x∗i , x

∗) when they have high
ability. Each high ability contestant has the same marginal cost of output so indifference
implies that the expected output density must also be the same: f ∗s2(x) = f ∗w2(x) for
x ∈ (max{x∗s, x∗w}, x∗). Since f ∗i2(x) = µih

∗
i2(x) for all x ∈ (x∗i , x

∗), then h∗s2(x) ≤ h∗w2(x)
for all x ∈ (max{x∗s, x∗w}, x∗). Then Hi2(x∗i ) = 0, requires that x∗s ≤ x∗w.

Therefore, for the remainder of the construction, there are three intervals to consider:
the best response set of the low types of both the stronger and the weaker contestants,
0 ≤ x ≤ x∗s, the best response set of the low type of the weaker contestant and the high
type of the strong contestant, x∗s ≤ x ≤ x∗w, and best response set of the high types of
each contestant, x∗w ≤ x ≤ x∗.

Within their best response sets, contestants must be indifferent between all output
levels. For example, the strong contestant with high ability must be indifferent to
picking all outputs between x∗s and x∗. This puts a condition on Fw2(x), the output
distribution of the weak contestant, on the interval [x∗s, x

∗]:

p2F
∗
w2(x′)− c

( x
ah

)
= p2F

∗
w2(x′)− c

(
x′

ah

)
.

Rearranging and taking the limit as x→ x′, limx→x′
F ∗w2(x)−F ∗w2(x′)

c( x

ah
)−c( x′

ah
)

= 1
p2
. Then the output

density of the strong contestant is

f ∗w2(x′) = lim
x→x′

F ∗w2(x)− F ∗w2(x′)

c
(
x
ah

)
− c

(
x′

ah

) c
(
x
ah

)
− c

(
x′

ah

)
ah
(

1
ah

(x− x′)
) =

c′
(
x′

ah

)
p2ah

.

A similar calculation on each interval for each contestant allows us to characterize
the densities of the output on each of the intervals below.

• x∗w ≤ x ≤ x∗: h∗s2(x) = c′(x/ah)
p2ahµs

, h∗w2(x) = c′(x/ah)
p2ahµw

, f ∗s2(x) = f ∗w2(x) = c′(x/ah)
p2ah

.
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• x∗s ≤ x ≤ x∗w: h∗s2(x) = c′(x)
p2µs

, `∗w2(x) = c′(x/ah)
p2ah(1−µw)

, f ∗s2(x) = c′(x)
p2

, f ∗w2(x) = c′(x/ah)
p2ah

.

• 0 ≤ x ≤ x∗s: `
∗
s2(x) = c′(x)

p2(1−µs) , `
∗
w2(x) = c′(x)

p2(1−µw)
, f ∗s2(x) = f ∗w2(x) = c′(x)

p2
.

It remains to characterize the cutoff points, x∗w, x
∗
s and x∗, and L∗w2(0). In equilib-

rium, the distribution of output for each contestant must satisfy

L∗i2(x∗i ) = 1, H∗i2(x∗i ) = 0, F ∗i2(x∗i ) = 1− µi, and F ∗i2(x∗) = 1.

Additionally, the strong contestant chooses no effort with zero probability, so L∗s2(0) =
0. Using L∗s2(x∗s) = 1 and the definition of `∗s2(x) on [0, x∗s], we calculate x∗s.∫ x∗s

0

`∗s2(x)dx = L∗s2(x∗s)− L∗s2(0) =
c(x∗s)

p2(1− µs)
= 1

Then c(x∗s) = p2(1−µs), so that x∗s = c−1(p2(1−µs)). Similarly, x∗w = c−1(p2(1−µw)).
From these endpoints we can calculate x∗.∫ x∗w

x∗s

h∗s2(x)dx =
c(x∗w)− c(x∗s)

µs
=

(1− µw)− (1− µs)
µs

=
µs − µw
µs∫ x∗

x∗w

h∗s2(xs)dx = 1− µs − µw
µs

=
µw
µs∫ x∗

x∗w

f ∗s2(xs)dx =
1

p2

(
c

(
x∗

ah

)
− c

(
c−1(p2(1− µw))

ah

))
= µw

x∗ = ahc−1

(
p2µw + c

(
c−1(p2(1− µw))

ah

))
Lastly, we pin down the probability that the weaker contestant exerts no effort.∫ x∗w

x∗s

`∗w2(x)dx =
1

p2(1− µw)

[
c

(
c−1(p2(1− µw))

ah

)
− c

(
c−1(p2(1− µs))

ah

)]
∫ x∗s

0

`∗w2(x)dx =
c(c−1(p2(1− µs)))

p2(1− µw)
− 0 =

1− µs
1− µw

L∗w2(0) = µs − µw −
1

p2(1− µw)

[
c

(
c−1(p2(1− µw))

ah

)
− c

(
c−1(p2(1− µs))

ah

)]
Lemma A.2. Given history η2 = (xs1, xw1) with associated beliefs, µs ≥ µw, the second
contest continuation value of each contestant conditional on their ability are

vhs (µs, µw) = vhw(µw, µs) = p2(1− µw)− c
(
c−1(p2(1− µw))

ah

)
,

v`s(µs, µw) = p2(µs − µw)−
[
c

(
c−1(p2(1− µw))

ah

)
− c

(
c−1(p2(1− µs))

ah

)]
,

= v`w(µw, µs) = 0.
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Proof. The expected payoffs of a high ability contestant are equal to the value of winning
less the cost of producing output x∗, as producing x∗ guarantees a win.

vhs (µs, µw) = vhw(µw, µs) = p2 − c(x∗/ah) = p2(1− µw)− c
(
c−1(p2(1− µw))

ah

)
The expected payoffs of low ability contestants is equal to the probability they win given
they exert no effort. This is the probability the other contestant puts in no effort.1

v`s(µs, µw) = p2(1− µw)L∗w2(0)

= p2(µs − µw)−
[
c

(
c−1(p2(1− µw))

ah

)
− c

(
c−1(p2(1− µs))

ah

)]
v`w(µw, µs) = p2(1− µs)L∗s2(0) = 0

Proposition A.1. Let Fµ−i(M) = Pr(µ−i ≤M) be the belief distribution of contestant
−i’s ability resulting from the first contest, and let M = sup{M |Fµ−i(M) = 0} and

M = inf{M |Fµ−i(M) = 1}. For all µi ∈ (M,M), expected payoffs in the second contest

decrease for high ability players as µi increases, ∂
∂µi

E[vhi (µi, µ−i)] < 0, and increase with

µi for low ability players, ∂
∂µi

E[v`i (µi, µ−i)] > 0.

Proof. In the second contest, for a given pair of beliefs, contestants will expect the
following payoffs:

vhi (µi, µ−i) = p2(1−min{µi, µ−i})− c
(
c−1(p2(1−min{µi, µ−i}))

ah

)

v`i (µi, µ−i) =

{
p2(µi − µ−i)−

[
c
(
c−1(p2(1−µ−i))

ah

)
− c

(
c−1(p2(1−µi))

ah

)]
, if µi ≥ µ−1

0, otherwise
.

For a high ability contestant believed to be high ability with probability µi and with
opponent’s belief distribution, Fµ−i , the expected payoff in the second contest is

E[vhi (µi, µ−i)]

=

∫ 1

0

(
p2(1−min{µi, µ−i})− c

(
c−1(p2(1−min{µi, µ−i}))

ah

))
dFµ−i(µ−i).

As the opponent believes the contestant is stronger, the change in expected payoff is

∂

∂µi
Eµ−i [vhi (µi, µ−i)] =

(
p2 +

∂

∂µi
c

(
c−1(p2(1− µi))

ah

))
(Fµ−i(µi)− 1).

1Here we technically are assuming the contestant wins all ties at zero, but if the agent exerts a tiny amount of effort
and we let that effort shrink to zero, then this is the payoff of the agent in the limit. Since the payoffs are continuous,
these limits must be the payoffs of the low ability contestants.
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For a low ability contestant, the expected payoff is

E[v`i (µi, µ−i)]

=

∫ µi

0

(
p2(µi − µ−i) + c

(
c−1(p2(1− µi))

ah

)
− c

(
c−1(p2(1− µ−i))

ah

))
dFµ−i(µ−i),

with change in expected payoff

∂

∂µi
E[v`i (µi, µ−i)] =

(
p2 +

∂

∂µi
c

(
c−1(p2(1− µi))

ah

))
Fµ−i(µi).

Given the assumptions on the cost of effort, c′(e) > 0 and c′′(e) ≥ 0,

∂

∂µi
c

(
c−1(p2(1− µi))

ah

)
= − 1

ah
c′
(
c−1(p2(1− µi))

ah

)
1

c′(c−1(p2(1− µi)))
∈
[
−p2

ah
, 0
)
.

Define d(µi) ≡
[
p2 + ∂

∂µi
c
(
c−1(p2(1−µi))

ah

)]
. For all µi, d(µi) ∈

[
p2(ah−1)

ah
, p2

)
. It follows

that

∂

∂µi
E[vhi (µi, µ−i)] = d(µi)(Fµ−i(µi)− 1) and

∂

∂µi
E[v`i (µi, µ−i)] = d(µi)Fµ−i(µi),

where the former derivative is strictly negative and the later is strictly positive when
µi ∈ (M−i,M−i).

Lemma A.3. In every SPBE, µ∗(x) is weakly increasing in x for all x ∈ Xi1 ≡
Xh
i1 ∪X`

i1.

Proof. Let x, x′ ∈ Xi1 such that x < x′ and µ(x) > µ(x′). Then 0 ≤ µ(x′) < µ(x) ≤ 1
which implies x ∈ Xh

i1 ⊆ BRh
i1 and x′ ∈ X`

i1 ⊆ BR`
i1. Best responses require

p1E[wi(x
′, x−i1)]− c(x′) + E[v`i (µ(x′), µ(x−i1))]

≥ p1E[wi(x, x−i1)]− c(x) + E[v`i (µ(x), µ(x−i1))], and

p1E[wi(x
′, x−i1)]− c(x′/ah) + E[vhi (µ(x′), µ(x−i1))]

≤ p1E[wi(x, x−i1)]− c(x/ah) + E[vhi (µ(x), µ(x−i1))].

This implies that

p1(E[wi(x
′, x−i1)]− E[wi(x, x−i1)]) + E[v`i (µ(x′), µ(x−i1))]− E[v`i (µ(x), µ(x−i1))]

≥ c(x′)− c(x), and

p1(E[wi(x
′, x−i1)]− E[wi(x, x−i1)]) + E[vhi (µ(x′), µ(x−i1))]− E[vhi (µ(x), µ(x−i1))]

≤ c(x′/ah)− c(x/ah).

From Proposition A.1, µ(x) > µ(x′) implies

E[v`i (µ(x′), µ(x−i1))]− E[v`i (µ(x), µ(x−i1))] ≤ 0,

and E[vhi (µ(x′), µ(x−i1))]− E[vhi (µ(x), µ(x−i1))] ≥ 0.
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Combining the previous inequalities,

c(x′)− c(x) ≤ p1(E[wi(x
′, x−i1)]− E[wi(x, x−i1)]) ≤ c(x′/ah)− c(x/ah),

which cannot be true given ah > 1, c′′(x) ≥ 0 and c′(x) > 0.

Proposition A.2. Given p1 = 0 and p2 > 0, there is a unique SPBE where Xi1 = {0}.

Proof. Equilibrium conditions are satisfied when H∗1 (x) = L∗1(x) = 1 for x ≥ 0 and 0
otherwise (i.e. the output densities of both high and low ability contestants consist of
a single mass point at x = 0), µ∗(x) = µ̂ for x ≥ 0, and second period distribution
functions are as characterized in the proof of Proposition 7.

To show that there can be no equilibrium where x̃ ∈ Xi1, such that x̃ > 0, assume
that there is. Then x̃ ∈ BR`

i1(σ−i)∪BRh
i1(σ−i). If x̃ ∈ BR`

i1(σ−i) then E[v`i (µ(x̃), µ(x−i1))]−
E[v`i (µ(0), µ(x−i1))] ≥ c(x̃) > 0 which implies that µ(x̃) > µ(0) ≥ 0. Because µ(x̃) > 0,
equilibrium conditions on the belief function require that x̃ ∈ Xh

i1 ⊂ BRh
i1 and there-

fore E[vhi (µ(x̃), µ(x−i1))]−E[vhi (µ(0), µ(x−i1))] ≥ c
(
x̃
ah

)
> 0, which cannot be true when

µ(x̃) > µ(0), a contradiction.
If x̃ ∈ BRh

i1(σ−i) \ BR`
i1(σ−i), then µ(x̃) < µ(0) which implies by Lemma A.3 that

0 6∈ Xi1. This however would require the existence of a positive output in BR`
i1(σ−i),

which we just ruled out.

Lemma A.4. Let p1 > 0. For any SPBE, first contest output distributions are con-
tinuous and therefore E[wi(xi1, x−i1)|xi1] = F ∗1 (xi1) = µ̂H∗1 (xi1) + (1 − µ̂)L∗1(xi1) is
continuous.

Proof. In a symmetric equilibrium, if an output is played with positive probability
by one type of contestant, then it must be played with positive probability by both
contestants of this type. Let x̃ ∈ {X`

i1 ∪Xh
i1} be played with probability q > 0. Then

E[wi(x̃, x−i1)] +
q

2
≤ E[wi(x, x−i1)] for all x > x̃.

Since, x̃ ∈ BRθ
i1(σ−i), for some θ, then for all x ≥ 0,

p1E[wi(x̃, x−i1)]− c(x̃/aθ) + E[vθi (µi(x̃), µ−i)]

≥ p1E[wi(x, x−i1)]− c(x/aθ) + E[vθi (µi(x), µ−i)].

Combining the above inequalities,

p1
q

2
≤ E[vθi (µi(x̃), µ−i)]− E[vθi (µi(x), µ−i)] + c(x/aθ)− c(x̃/aθ).

By continuity of the cost function, ∃ε > 0 such that for all x ∈ (x̃, x̃ + ε), we have
c
(
x̃+ε
aθ

)
− c

(
x̃
aθ

)
< p1

q
2
. Then for each x in this range

E[vθi (µi(x̃), µ−i)]− E[vθi (µi(x), µ−i)] > 0. (1)

From Proposition A.1, if θ = `, then µi(x̃) > µi(x) and x̃ ∈ {X`
i1 ∩Xh

i1}. Similarly,
if θ = h, then µi(x̃) < µi(x) and x̃ ∈ {X`

i1 ∩ Xh
i1}. In either case, x̃ ∈ {BR`

i1(σ−i) ∩
BRh

i1(σ−i)}. However, (1) cannot hold for both θ = ` and θ = h, a contradiction.

6



Lemma A.5. Let p1, p2 > 0. Define x`∗ = inf X`
i1, x∗` = supX`

i1, xh∗ = inf Xh
i1, and

x∗h = supXh
i1. In any SPBE, the best response sets of low and high ability contestants

in the first contest are intervals with BR`
i1(σ∗) = [0, x∗` ], BR

h
i1(σ∗) = [xh∗, x

∗
h] and

0 = x`∗ ≤ xh∗ < x∗` ≤ x∗h.

Proof. From Lemma A.4 we now can use the fact that L∗1(x) and H∗1 (x), and there-
fore F ∗1 (x), are continuous in x and we have that in equilibrium E[wi(x, x−i1)] =
Pr(x−i1 < x|σ∗−i) = Pr(x−i1 ≤ x|σ∗−i) = F ∗1 (x). Combined with Lemma A.3, we
have Pr(µ∗(x−i1) < µ∗(x)|σ∗−i) ≤ E[wi(x, x−i1)] = F ∗1 (x) ≤ Pr(µ∗(x−i1) ≤ µ∗(x)|σ∗−i) =
Fµ−i(µ

∗(x)). The proof follows in four steps.

(1) We first show that x`∗ = 0. We do this by first showing that x`∗ ≤ xh∗, and then
showing that x`∗ cannot be larger than zero.

Let xh∗ < x`∗. Since xh∗ = inf Xh
i1, ∀ε > 0, ∃xε such that xh∗ ≤ xε < xh∗ + ε and

xε ∈ Xh
i1. In particular, this holds for ε∗ = x`∗ − xh∗. Then xε∗ ∈ {Xh

i1 \ X`
i1} and

µ∗(xε∗) = 1. However, from Lemma A.3 we would have µ∗(x) = 1 for all x ∈ X`
i1, which

cannot hold. Therefore xh∗ ≥ x`∗.
If 0 < x`∗ < xh∗, then by Lemma A.4, ∃δ with 0 < δ < xh∗ − x`∗ such that

∀x ∈ (x`∗, x`∗ + δ) we have |p1(F ∗1 (x) − F ∗1 (0))| = |p1(F ∗1 (x) − F ∗1 (x`∗))| < c(x`∗). Let
xδ ∈ X`

i1 ∩ (x`∗, x`∗+ δ). Then µ(xδ) = 0 and p1(F ∗1 (xδ)−F ∗1 (0)) < c(xδ). However this
implies

p1F
∗
1 (0) + E[v`i (µ(0), µ−i)] > p1F

∗
1 (xδ) + E[v`i (µ(xδ), µ−i)]− c(xδ),

and therefore xδ 6∈ BR`
i1(σ−i), a contradiction.

If 0 < x`∗ = xh∗, then ∃x`, xh such that x` ≤ xh, x` ∈ X`
i1, xh ∈ Xh

i1, and p1(F ∗1 (x`)−
F ∗1 (x`∗)) = p1F

∗
1 (x`) < c(x`∗) < c(x`) and p1(F ∗1 (xh) − F ∗1 (xh∗)) = p1F

∗
1 (xh) <

c(xh∗/ah) < c(xh/ah), by the continuity of F ∗1 (x). It follows that x` ∈ X`
i1 implies

p1F
∗
1 (x`)− c(x`) + E[v`i (µ(x`), µ−i)] ≥ p1F

∗
1 (0)− c(0) + E[v`i (µ(0), µ−i)]

and E[v`i (µ(x`), µ−i)] > E[v`i (µ(0), µ−i)], which requires µ(x`) > µ(0).
Similarly, xh ∈ Xh

i1 implies that µ(xh) < µ(0). Combining these two inequalities leads
to µ(xh) < µ(x`). This contradicts Lemma A.3. Therefore we must have 0 = x`∗ ≤ xh∗.

(2) We next show that xh∗ ≤ x∗` .

If x∗` < xh∗, then ∀x ∈ (x∗` , xh∗), x 6∈ {X`
i1∪Xh

i1}. Let x̃ =
x∗`+xh∗

2
and ε = c(xh∗/a

h)−
c(x̃/ah). There is a δ > 0 such that ∀x ∈ (xh∗, xh∗+δ), p1(F ∗1 (x)−F ∗1 (xh∗)) < ε. Pick an
xδ such that xδ ∈ (xh∗, xh∗+ δ) and xδ ∈ Xh

i1. Then p1(F1(xδ)−F1(xh∗)) = p1(F1(xδ)−
F1(x′)) < ε, c(xδ/a

h)− c(x̃/ah) > ε, and E[vhi (µ(xδ), µ−i)] ≤ E[vhi (µ(x̃), µ−i)]. Then

p1F
∗
1 (x̃) + E[vhi (µ(x̃), µ−i)]− c

(
x̃

ah

)
> p1F

∗
1 (xδ) + E[vhi (µ(xδ), µ−i)]− c

(xδ
ah

)
,

a contradiction. So we can conclude that x∗` ≤ xh∗.
Also x∗` ≤ x∗h. If we assume otherwise, then we can find x ∈ {X`

i1\Xh
i1} where x > x∗h

and µ(x) = 0. Lemma A.3 rules out this possibility.
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We have shown so far that 0 = x`∗ ≤ xh∗ ≤ x∗` ≤ x∗h.

(3) For all x ∈ (x`∗, xh∗), x ∈ BR`
i1(σ−i) and for all x ∈ (x∗` , x

∗
h), x ∈ BRh

i1(σ−i).
Given x`∗ < xh∗, let X`

c = {x|x ∈ (x`∗, xh∗) \ BR`
i1(σ−i)}. If x ∈ X`

c , then ∃ε > 0
such that for all x′ ∈ (x`,∗, xh,∗) ∩X`

i1,

p1F
∗
1 (x) + E[v`i (µ(x), µ−i)]− c(x) < p1F

∗
1 (x′) + E[v`i (µ(x′), µ−i)]− c(x′)− ε,

where E[v`i (µ(x), µ−i)] ≥ E[v`i (µ(x′), µ−i)] as µ(x′) = 0. Therefore p1F
∗
1 (x) − c(x) <

p1F
∗
1 (x′)− c(x′)− ε, and for all x′ > x, p1(F ∗1 (x′)− F ∗1 (x)) > c(x′)− c(x)− ε.

Since F ∗1 (x) and c(x) are continuous, then there is a δε > 0 such that for all x′ ∈ X`
i1,

|x′ − x| ≥ δε. This implies that x is contained in an interval which is a subset of X`
c .

Let a and b be the infimum and supremem of this interval respectively.

• If b < xh∗, then ∃x′ < xh∗, x
′ ∈ X`

i1 where |x′ − b| < δ, ∀δ > 0. Then, by the
continuity of F ∗1 (x), ∃x′ ∈ X`

i1 and p1(F ∗1 (x′) − F ∗1 (b)) < c(b) − c(a+b
2

). Then we
know that

p1F
∗
1 (x′)− p1F

∗
1

(
a+ b

2

)
< c(b)− c

(
a+ b

2

)
and

E[v`i (µ(x′), µ−i)] ≤ E
[
v`i

(
µ

(
a+ b

2

)
, µ−i

)]
,

which contradicts x′ ∈ BR`
i1(σ−i).

• If b = xh∗, then ∃x′ ∈ Xh
i1, where |x′ − xh∗| < δ, ∀δ > 0. We can take x′ ∈ Xh

i1

such that p1(F ∗1 (x′)− F ∗1 (xh∗)) < c( b
ah

)− c(a+xh∗
2ah

).

– If x′ 6∈ X`
i1 then µ(x′) = 1, but since E[vhi (µ(x′), µ−i)] ≤ E

[
vhi
(
µ
(
a+xh∗

2

)
, µ−i

)]
,

then this contradicts x′ ∈ BRh
i1(σ−i).

– If x′ ∈ X`
1, then µ(x′) ∈ [0, 1]. If µ(x′) ≤ µ(a+xh∗

2
), then this contradicts

x′ ∈ BR`
i1(σ−i), but if µ(x′) ≥ µ(a+xh∗

2
), this contradicts x′ ∈ BRh

i1(σ−i).

Therefore X`
c must be empty.

Similarly, define Xh
c = {x|x ∈ (x∗` , x

∗
h) \ BRh

i1(σ−i)} and let x ∈ Xh
c . Then ∃δε > 0

such that for all x′ ∈ Xh
i1, |x′ − x| ≥ δε > 0. Take a and b to be the infimum and

supremum respectively of the interval of Xh
c containing x noting that b < x∗h.

There is an x′ ∈ Xh
i1 where |x′−b| < δ for all δ > 0. Then we can take x′ ∈ BRh

i1(σ−i)
such that p1(F ∗1 (x′) − F ∗1 (b)) < c( b

ah
) − c( b+a

2ah
). This implies p1(F ∗1 (x′) − F ∗1 ( b+a

2
)) <

c( x
′

ah
)− c( b+a

2ah
) and

p1F
∗
1

(
b+ a

2

)
− c

(
b+ a

2ah

)
+ E

[
vhi

(
µ

(
b+ a

2

)
, µ−i

)]
> p1F

∗
1 (x′)− c

(
x′

ah

)
+ E[vhi (µ(x′), µ−i)].
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This contradicts x′ ∈ BRh
i1(σ−i), and therefore Xh

c must be empty.

(4) Lastly, we show that xh∗ < x∗` , and for all x ∈ (xh∗, x
∗
`), x ∈ BR`

i1(σ−i)∩BRh
i1(σ−i).

If x∗` = xh∗, then ∀δ > 0, there is x` ∈ X`
i1 and xh ∈ Xh

i1 where |xh− x`| < δ. By the
continuity of F ∗1 (x) and c(x), there is xh and x` for which

p1F
∗
1 (xh)− c

(xh
ah

)
−
(
p1F

∗
1 (x`)− c

(x`
ah

))
< E[vhi (µ(x`), µ−i)]− E[vhi (µ(xh), µ−i)]

since µ(x`) = 0, µ(xh) = 1, and E[vhi (0, µ−i)]− E[vhi (1, µ−i)] > 0. Then

p1F
∗
1 (x`)− c

(x`
ah

)
+ E[vhi (µ(x`), µ−i)] > p1F

∗
1 (xh)− c

(xh
ah

)
+ E[vhi (µ(xh), µ−i)],

which contradicts xh ∈ BRh
i1(σ−i).

Define Xc = {x|x ∈ (xh∗, x
∗
`)\(BR`

i1(σ−i)∪BRh
i1(σ−i))}. From Lemma A.3, we know

that for all x′ ∈ {(xh∗, x∗`) ∩ (X`
i1 ∪ Xh

i1)}, µ(x′) ∈ (0, 1) as µ(x′) = 1, implies x∗` ≤ x′

and µ(x′) = 0 implies xh∗ ≥ x′. Therefore x′ ∈ X`
i1 ∩Xh

i1.
Let x ∈ Xc be given. Then for all x′, x′′ ∈ {(xh∗, x∗`) ∩ (X`

i1 ∩ Xh
i1)} such that x′ <

x < x′′ we must by Lemma A.3 have µ(x′) ≤ µ(x′′). Let µ∗ ∈ [sup{µ(x′)}, inf{µ(x′′)}].
These are well-defined as there is at least one such x′ and x′′.

If µ(x) ≥ µ∗ then E[v`i (µ(x), µ−i)] ≥ E[v`i (µ(x′), µ−i)] for all x′ and

p1F
∗
1 (x′)− c(x′) + E[v`i (µ(x′), µ−i)]− ε1 > p1F

∗
1 (x)− c(x) + E[v`i (µ(x), µ−i)]

⇒ p1F
∗
1 (x′)− c(x′)− ε1 > p1F

∗
1 (x)− c(x).

By continuity of F ∗1 (x) and c(x), ∃δ1 > 0 such that [x− δ1, x] ⊂ Xc.
Similarly, if µ(x) < µ∗, then E[vhi (µ(x), µ−i)] ≥ E[vhi (µ(x′′), µ−i)] for all x′′ and

p1F
∗
1 (x′′)− c

(
x′′

ah

)
− ε2 > p1F

∗
1 (x)− c

( x
ah

)
.

By continuity, ∃δ2 > 0 such that [x, x + δ2] ⊂ Xc. In either case, if x ∈ Xc, then there
is an interval with some supremum b and infimum a such that x ∈ (a, b) ⊂ Xc.

If b < x∗` , then there is an x̃ ∈ {(xh∗, x∗`)∩X`
i1 ∩Xh

i1} where |x̃− b| < δ for all δ > 0,
and therefore there is an x̃ where p1(F ∗1 (x̃)−F ∗1 (b)) < c(b/ah)− c( b+a

2ah
). It follows that

p1(F ∗1 (x̃)− F ∗1 ( b+a
2

)) < c(x̃/ah)− c( b+a
2ah

) and p1(F ∗1 (x̃)− F ∗1 ( b+a
2

)) < c(x̃)− c( b+a
2

).
If µ((b+ a)/2) < µ(x̃) then

p1F
∗
1

(
b+ a

2

)
− c

(
b+ a

2ah

)
+ E

[
vhi

(
µ

(
b+ a

2

)
, µ−i

)]
> p1F

∗
1 (x̃)− c

(
x̃

ah

)
+ E[vhi (µ(x̃), µ−i)].

If µ((b+ a)/2) ≥ µ(x̃) then

p1F
∗
1

(
b+ a

2

)
− c

(
b+ a

2

)
+ E

[
v`i

(
µ

(
b+ a

2

)
, µ−i

)]
> p1F

∗
1 (x̃)− c(x̃) + E[v`i (µ(x̃), µ−i)].
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In either case, this contradicts x̃ ∈ X`
i1 ∩Xh

i1.
If b = x∗` , then there is an x̃ ∈ Xh

i1, such that |x̃− b| < δ, and µ(x̃) = 1. This implies
that p1(F ∗1 (x̃)− F ∗1 ( b+a

2
)) < c(x̃/ah)− c( b+a

2ah
), and

p1F
∗
1

(
b+ a

2

)
− c

(
b+ a

2ah

)
+ E

[
vhi

(
µ

(
b+ a

2

)
, µ−i

)]
> p1F

∗
1 (x̃)− c

(
x̃

ah

)
+ E[vhi (µ(x̃), µ−i)].

This contradicts x̃ ∈ Xh
i1. Therefore Xc must be empty and for all x ∈ (xh∗, x

∗
`), we

must have x ∈ BR`
i1(σ−i) ∩BRh

i1(σ−i).

Lemma A.6. In any SPBE, the belief function is continuous in output on [0, x∗h], is
weakly increasing on (xh∗, x

∗
`), takes a value of zero for all x ∈ [0, xh∗] when xh∗ > 0,

and takes a value of one for all x ∈ [x∗` , x
∗
h] when x∗h > x∗` .

Proof. To show that µ∗(x) is continuous on (0, x∗h), note that equilibrium expected pay-
offs of a low ability contestant are constant for all x ∈ BR`

i1(σ∗) and likewise for high
ability contestants for all x ∈ BRh

i1(σ∗). Since F ∗1 (x) and c(x) are continuous on (0,∞)
and E[v`i (µ

∗(x), µ−i)] = c(x)−p1F
∗
1 (x)+K`(p1, p2) on [0, x∗` ], then E[v`i (µ

∗(x), µ−i)] must
be continuous on this interval. Similarly, E[vhi (µ∗(x), µ−i)] is continuous on [xh∗, x

∗
h].

Since E[vhi (µ∗(x), µ−i)] is strictly decreasing in µ∗(x), and E[v`i (µ
∗(x), µ−i)] is strictly in-

creasing in µ∗(x), then µ∗(x) must also be continuous on BR`
i1(σ∗)∪BRh

i1(σ∗) = [0, x∗h].

To show the remaining properties of the equilibrium belief function, we first show
that the set [0, x∗h] \ Xi1 has no interior, i.e. there can be no interval [a, b] ⊂ [0, x∗h]
where for all x ∈ [a, b], x 6∈ Xi1. This implies that Xi1 is dense in [0, x∗h].

If we let [ã, b̃] ⊂ [0, x∗h] \ Xi1 be given, then define a and b to be the infimum and

supremum respectively of the interval in [0, x∗h] \Xi1 which contains [ã, b̃]. Neither xh∗
nor x∗` can be contained in the interval as they are the limit point of a subset of Xi1.
Then the interval [a, b] must be contained within either [0, xh∗], [xh∗, x

∗
` ], or [x∗` , x

∗
h].

1. If [a, b] ⊂ [0, xh∗], then for all x ∈ [a, b], x ∈ BR`
i1(σ∗) and F ∗1 (x) = F ∗1 (a).

Therefore, E[v`i (µ
∗(b), µ−i)] − c(b) = E[v`i (µ

∗(a), µ−i)] − c(a), which implies that
µ(b) > µ(a). Since µ(x) is continuous, then for all δ > 0, there is an x ∈ Xh

i1 such
that |x− b| < δ and µ(x) > 0. If x ∈ Xh

i1 \X`
i1, then µ∗(x)=1, and x 6∈ BRh

i1(σ∗),
a contradiction. If x ∈ Xh

i1 ∩X`
i1 then depending on the value of µ∗((a+ b)/2), it

must be that either x 6∈ BRh
i1(σ∗) or x 6∈ BR`

i1(σ∗), again a contradiction.

2. If [a, b] ⊂ [xh∗, x
∗
` ], then for all x ∈ [a, b], x ∈ {BR`

i1(σ∗)∩BRh
i1(σ∗)} which implies

E[v`i (µ
∗(b), µ−i)]− c(b) = E[v`i (µ

∗(a), µ−i)]− c(a),

E[vhi (µ∗(b), µ−i)]− c(b/ah) = E[vhi (µ∗(a), µ−i)]− c(a/ah).

However, rearranging these equations, it is clear they cannot hold at the same time
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as the right hand sides are both strictly positive which contradicts Proposition A.1.

E[v`i (µ
∗(b), µ−i)]− E[v`i (µ

∗(a), µ−i)] = c(b)− c(a)

E[vhi (µ∗(b), µ−i)]− E[vhi (µ∗(a), µ−i)] = c(b/ah)− c(a/ah)

3. If [a, b] ⊂ [x∗` , x
∗
h], then for all x ∈ [a, b], x ∈ BRh

i1(σ∗) and therefore,

E[vhi (µ∗(b), µ−i)]− c(b/ah) = E[vhi (µ∗(a), µ−i)]− c(a/ah),
and µ∗(b) < µ∗(a) ≤ 1. Then for all δ > 0, there is an x ∈ Xh

i1 such that |x−b| < δ
and µ∗(x) = 1. However, this contradicts the continuity of µ∗(x).

Now, if x ∈ [0, xh∗) and µ∗(x) = ε > 0, then by the continuity of µ∗(x), ∃δ > 0
where ∀x′, |x′ − x| < δ, µ∗(x) > ε/2. However for all δ > 0 there is an x′ ∈ X`

i1 \ Xh
i1

for which µ∗(x′) = 0, a contradiction. Therefore µ∗(x) = 0 for all x ∈ [0, xh∗). Note
that µ∗(xh∗) = 0 when xh∗ > 0, which follows from continuity from the left. Similarly,
µ∗(x) = 1 for all x ∈ [x∗` , x

∗
h] when x∗` < x∗h. To show that µ∗(x) is weakly increasing on

[xh∗, x
∗
` ], let x, y ∈ [xh∗, x

∗
` ] be such that, µ∗(x) > µ∗(y) and x < y. Then there is an x′

and y′ arbitrarily close to x and y respectively, where x′, y′ ∈ Xi1 and therefore µ∗(x′) ≤
µ∗(y′). This is not consistent with µ∗(x) being continuous on [0, x∗h], a contradiction.

Proof of Theorem 2

There are up to three distinct intervals in each equilibrium. We will show that the end-
points of these intervals and the distribution functions on the intervals are completely
determined by the first order conditions of the contestants.

Conditions for x being in BRh
i1(σ∗) and BR`

i1(σ∗) are

BRh
i1(σ∗) : p1F

∗
1 (x) + E[vhi (µ∗(x), µ−i)]− c

( x
ah

)
= Kh(p1, p2),

BR`
i1(σ∗) : p1F

∗
1 (x) + E[v`i (µ

∗(x), µ−i)]− c(x) = K`(p1, p2) = 0.

For all values of p1 > 0 and p2 > 0, Lemma A.5 shows that xh∗ < x∗` , and therefore
the interval [xh∗, x

∗
` ] is non-trivial. On this interval, x ∈ X`

i1∪Xh
i1 implies x ∈ X`

i1∩Xh
i1 ⊂

BR`
i1(σ∗) ∩ BRh

i1(σ∗). Subtracting the condition for BR`
i1(σ∗) from the condition for

BRh
i1(σ∗)

E[vhi (µ∗(x), µ−i)]− E[v`i (µ
∗(x), µ−i)] = c

( x
ah

)
− c(x) +Kh(p1, p2).

Taking the derivative of each side with respect to output gives (16):

dµ∗(x)

dx
d(µ∗(x)) = c′(x)− 1

ah
c′
( x
ah

)
.

Note that on this interval, dµ∗(x)
dx

> 0 and therefore, F ∗µ(µ∗(x)) = F ∗1 (x).

Taking the derivative of the condition for X`
1 and combining (16) we recover (17):

p1f
∗
1 (x) +

dµ∗(x)

dx
d(µ∗(x))F ∗1 (x) = c′(x)

⇒ p1f
∗
1 (x) = c′(x)(1− F ∗1 (x)) +

1

ah
c′
( x
ah

)
F ∗1 (x).
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From continuity of F ∗1 (x), p1F
∗
1 (xh∗) = c(xh∗). For a given xh∗, using the Picard -

Lindelöf Theorem2, we know that there is a unique solution for f ∗1 (x) on [xh∗, x
∗
` ], and

therefore F ∗1 (x) is determined on this interval.
To see why only one such xh∗ can lead to an equilibrium, consider a different

initial condition, p1F̃
∗(x̃h∗) = c(x̃h∗) where x̃h∗ > xh∗ and the associated f̃ ∗1 (x) on

[x̃h∗, x̃
∗
` ]. Then both F̃ ∗1 (x̃h∗) > F ∗1 (x̃h∗) and µ̃∗(x̃h∗) < µ∗(x̃h∗), and for all x ∈ [x̃h∗, x

∗
` ],

F̃ ∗1 (x) > F ∗1 (x), f̃ ∗1 (x) < f ∗1 (x), and µ∗(x) > µ̃∗(x). This implies that H̃∗1 (x∗`) =∫ x∗`
0
µ̃∗(x)f̃ ∗1 (x)dx <

∫ x∗`
0
µ∗(x)f ∗1 (x)dx = H∗1 (x∗`) and therefore L̃∗1(x∗`) > L∗1(x∗`) = 1, a

contradiction. Similarly, there cannot be an additional equilibrium where x̃h∗ < xh∗.
The belief function on this interval is determined up to a constant by equation

(16). The constant is determined by µ∗(xh,∗) which is 0 when xh∗ > 0, and needs
to be characterized in equilibrium when xh∗ = 0. Given this constant, the equilibrium
strategies of high ability and low ability contestants can be constructed on this interval.

For small values of p1 relative to p2, this is the only non-trivial interval: xh∗ = 0 and
x∗` = x∗h. In this case, µ∗(xh∗) ∈ [0, µ̂] and µ∗(x∗h) ∈ [µ̂, 1] both need to be determined in
equilibrium along with x∗h. By an argument similar to that for showing xh∗ is unique, if
xh∗ = 0 then µ∗(xh∗) is also uniquely determined. Then µ∗(x) and F ∗1 (x) are uniquely
determined on this interval, and therefore x∗h and µ∗(x∗h) are also uniquely determined.

For larger p1, xh∗ > 0 and/or x∗h > x∗` . When the intervals are non-trivial, then the
belief functions on these intervals were characterized in Lemma A.6. Characterization
of the output distributions directly follow. For x ∈ [0, xh∗), E[v`i (µ

∗(x), µ−i)] = 0 as
µ∗(x) = 0, and therefore p1F

∗
1 (x) = c(x). For all x ∈ [x∗` , x

∗
h], E[vhi (µ∗(x), µ−i)] =

E[vhi (1, µ−i)] and p1F
∗
1 (x) + E[vhi (1, µ−i)] = c(x/ah) +Kh(p1, p2).

Given F ∗1 (x) and µ∗(x) on [0, x∗], the output distribution of both the low and high
ability contestants can be determined. Therefore F ∗1 (x), L∗1(x) and H∗1 (x) are uniquely
characterized on Xi1 where X i1 = [0, x∗h]. These distributions along with the second
period output distributions L∗i2(x|η2) and H∗i2(x|η2) form the unique SPBE.

Proposition A.3. Let F ∗µ(M) be the equilibrium belief distribution associated with

prize ratio p1/p2 and F̃ ∗µ(M) be associated with p̃1/p̃2. Then p1/p2 > p̃1/p̃2 implies

F ∗µ(M) <SOSD F̃ ∗µ(M).

Proof. Belief distributions that arise after the first contest for different prize structures
must be equal at least at one point. If the distributions do not cross then one distri-
bution FOSD the other and the distributions cannot have the same expected value.
However, the expectation of the probability that a contestant is high ability is µ̂ in
either case.

Let µ̃(ˆ̃x) = µ(x̂) = M̂ be a point of intersection for belief distributions F̃µ(M) and
Fµ(M). Note that

fµ(M̂) =
∂

∂µ
F1(µ−1(M̂)) =

f1(µ−1(M̂))

µ′(µ−1(M̂))
=
f1(x̂)

µ′(x̂)
.

2The right hand side of equation (17) is continuous in x and uniformly Lipshitz continuous in F ∗1 (x) on the interval
of [xh∗, x

∗
` ]. Also, due to the properties of the cost function, the distribution function is bounded between 0 and 1.
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From equations (16) and (17),

f1(x̂)

µ′(x̂)
=
d(µ(x̂))

(
c′(x)− F1(x̂)

(
c′(x)− 1

ah
c′
(
x̂
ah

)))
p1

(
c′(x)− 1

ah
c′
(
x̂
ah

)) =
d(µ(x̂))

p1

(
aαh

aαh − 1
− F1(x̂)

)

=
p2

p1

(
aαh(1− F1(x̂)) + F1(x̂)

aαh

)
Because F̃1(µ̃−1(M̂)) = F1(µ−1(M̂)), then f̃µ(M̂) ≶ fµ(M̂) when p̃2

p̃1
≶ p2

p1
. Given that

f̃µ(M̂) < fµ(M̂), as in the case when first contest prize is increased for a fixed second

contest prize, this implies that F̃µ(M) crosses Fµ(M) exactly once from above and

F̃µ(M) <SOSD Fµ(M). An increase the second contest prize for fixed first contest prize

implies F̃µ(M) crosses Fµ(M) exactly once from below and F̃µ(M) >SOSD Fµ(M).

Equilibrium construction

Assume the cost function takes the form, c(x) = kxα, with α ≥ 1 and k > 0 and
let µ̂ = 1/2. For the equilibrium of the first contest we find the ex-ante expected
distribution of each contestant over each of the potential three ranges of output which

depend on the values of p1 and p2. Let A = ah
α

ahα−1
.

For any values of p1 and p2, xh∗ < x∗` . For x ∈ [xh∗, x
∗
` ] the expected output

distribution satisfies equation (17). The family of solutions is

F ∗1 (x) = Be(c(x/ah)−c(x))/p1 + A,

with boundary condition F ∗1 (xh∗) = 1
p1
kxαh∗. The solution is

F ∗1 (x) = A−
(
A− 1

p1

kxαh∗

)
e
− 1
Ap1

(kxα−kxαh∗).

The belief function satisfies the condition in equation (16) which simplifies under this
parameterization to p2µ

′(x) = c′(x). The belief function is µ∗(x) = 1
p2

(kxα + C), where

C = −c(xh∗) if xh∗ > 0 and C = p2µ
∗(xh∗) if xh∗ = 0. Therefore

F ∗1 (x) = A−
(
A− 1

p1

kxαh∗

)
e
− p2
Ap1

(µ∗(x)−µ∗(xh∗)),

where µ∗(xh∗) = 0 when xh∗ > 0.
If xh∗ > 0, then F ∗1 (x) = 1

p1
kxα and µ∗(x) = 0 for x ∈ [0, xh∗]. If x∗` < x∗h, then

F ∗1 (x) = 1
p1

(
1
ahα

kxα +Kh(p1, p2)− E[vhi (1, µ−i)]
)

and µ∗(x) = 1 for x ∈ [x∗` , x
∗
h].

Given F ∗1 (x) and µ∗(x), the output distribution of the both the high and low ability

contestants comes from using 2F ∗1 (x) = L∗1(x) +H∗1 (x) and µ∗(x) =
h∗1(x)

`∗1(x)+h∗1(x)
.
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Over the range x ∈ [xh,∗, x
∗
` ] these distributions are

H∗1 (x) = 2(A− 1

p1

kxαh,∗)

(
Ap1

p2

− (µ∗(x) +
Ap1

p2

)e
− p2
Ap1

(µ∗(x)−µ∗(xh,∗))
)

+ 2Aµ∗(xh,∗) and

L∗1(x) = 2A(1− µ∗(xh,∗)) + 2(A− 1

p1

kxαh,∗)

(
(µ∗(x) +

Ap1

p2

− 1)e
− p2
Ap1

(µ∗(x)−µ∗(xh,∗)) − Ap1

p2

)
.

Small prize in first contest

Given p2, for p1 close enough to 0 (specifically for p1 <
p2
2

((A2 − A) log(ah
α
) − A)−1),

both xh∗ = 0 and x∗` = x∗h. The expected output distribution becomes

F ∗1 (x) = A
(

1− e−
p2
Ap1

(µ∗(x)−µ∗(xh∗))
)

, for 0 ≤ x ≤ x∗h.

Given H∗1 (xh∗) = F ∗1 (xh∗) = F ∗1 (0) = 0, the output distribution of the high ability
contestant is

H∗1 (x) =

∫ x

0

µ∗(t)f ∗1 (t)dt = 2F ∗1 (x)

(
µ∗(x) +

Ap1

p2

)
− 2A(µ∗(x)− µ∗(xh∗)).

Combining F ∗1 (x∗h) = 1 and H1(x∗h) = 1 gives

µ∗(x∗h)− µ∗(xh∗) =
p1

p2

+
2µ∗(x∗h)− 1

2A
.

Plugging back into F ∗1 (x∗h) = 1, we can solve the belief function at each end point:

µ∗(x∗h) =
1

2
+
p1

p2

(A2 log(ah
α
)− A) and µ∗(xh∗) =

1

2
+
p1

p2

((A2 − A) log(ah
α
)− A).

Therefore µ∗(x∗h)− µ∗(xh∗) = p1
p2
A log(ah

α
) and kx∗h

α = p1A log(ah
α
).

Example of parameters that fall in this category: c(e) = e2, ah = 2 and p1 = .5 and
p2 = 1.

Intermediate prize in first contest

For larger p1 compared to p2, (specifically p1 > p2
2

((A2 − A) log(ah
α
) − A)−1), then

H∗1 (x∗`) < 1 and x∗` < x∗h. The expected output distribution is

F ∗1 (x) =

{
A
(

1− e
−p2
Ap1

(µ∗(x)−µ∗(xh∗))
)

0 ≤ x ≤ x∗`
1
p1

( k
ahα

xα +Kh(p1, p2)− E[vhi (1, µ−i)]) x∗` ≤ x ≤ x∗h
.

The output distributions of the high and low ability contestants are

H∗1 (x) = 2F ∗1 (x)

(
µ∗(x) +

Ap1

p2

)
− 2A(µ∗(x)− µ∗(xh∗)) and

L∗1(x) = 2F ∗1 (x)

(
1− µ∗(x)− Ap1

p2

)
+ 2A(µ∗(x)− µ∗(xh∗)).
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To characterize the equilibrium we need to solve for µ∗(0), x∗` , x
∗
h, and Kh(p1, p2) −

E[vhi (1, µ−i)].

1. Continuity of the belief function: µ∗(x∗`) = 1 implies that kx∗`
α = p2(1− µ∗(xh∗)):

2. L∗1(x∗`) = 1 gives an implicit equation for µ∗(xh∗).

1 = 2A

(
(1− µ∗(xh∗))−

Ap1

p2

(
1− e−

p2
Ap1

(1−µ∗(xh∗))
))

3. By continuity of F ∗1 (x) at x∗` , we can find Kh(p1, p2)− E[vhi (1, µ−i)]:

A− Ae−
p2
Ap1

(1−µ∗(xh∗)) =
1

p1

(
k

ahα
x∗`

α +Kh(p1, p2)− E[vhi (1, µ−i)]).

Using the equation that determines µ∗(xh∗) and the belief equations, this simplifies
to

Kh(p1, p2)− E[vhi (1, µ−i)] =
p2

A

(
1

2
− µ(xh∗)

)
.

4. From F ∗1 (x∗h) = 1 we can find x∗h:

kx∗h
α = p1a

hα − p2(ah
α − 1)(1/2− µ∗(xh∗)).

Example of parameters that fall in this category: c(e) = e2, ah = 2 and p1 = 0.8 and
p2 = 1.

Large prize in first contest

For large enough p1, all three intervals are non-trivial, µ∗(xh∗) = 0 and µ∗(x∗`) = 1. The
distribution functions are

F ∗1 (x) =


1
p1
kxα 0 ≤ x ≤ xh∗

A− (A− 1
p1
kxαh∗)e

−p2
Ap1

µ∗(x)
xh∗ ≤ x ≤ x∗`

1
p1

( k
ahα

xα +Kh(p1, p2)− E[vhi (1, µ−i)]) x∗` ≤ x ≤ x∗h

,

L∗1(x) =


2
p1
kxα, 0 ≤ x ≤ xh∗

2A+ 2(A− 1
p1
kxαh∗)

(
(µ∗(x) + Ap1

p2
− 1)e

− p2
Ap1

µ∗(x) − Ap1
p2

)
, xh∗ ≤ x ≤ x∗`

1, x∗` ≤ x ≤ x∗h

, and

H∗1 (x) =


0, 0 ≤ x ≤ xh∗

2(A− 1
p1
kxαh∗)

(
Ap1
p2
− (µ∗(x) + Ap1

p2
)e
− p2
Ap1

µ∗(x)
)
, xh∗ ≤ x ≤ x∗`

2
p1

( k
aαh
xα +Kh(p1, p2)− E[vhi (1, µ−i)])− 1 x∗` ≤ x ≤ x∗h

.
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Using µ∗(x∗`) = 1 and L∗1(x∗`) = 1 identifies the endpoints of the middle interval:

kxαh∗ = p1

(
A− (2A− 1)p2

2Ap1(1− e−
p2
Ap1 )

)
and kx∗`

α = p2 + p1

(
A− (2A− 1)p2

2Ap1(1− e−
p2
Ap1 )

)
.

Continuity of the expected output distribution at x∗` gives

1

p1

(
1

ahα
k(x∗`)

α +Kh(p1, p2)− E[vhi (1, µ−i)]) = A− (A− 1

p1

kxαh∗)e
− p2
Ap1 .

Then the constant associated with the third interval is

Kh(p1, p2)− E[vhi (1, µ−i)] = p1 −
p2

aαh

(
1 +

2A− 1

2A

ah
α
e
− p2
Ap1 − 1

1− e−
p2
Ap1

)
.

Using F ∗1 (x∗h) = 1 the endpoint of the upper interval is characterized by

kx∗h
α = ah

α (
p1 − (Kh(p1, p2)− E[vhi (1, µ−i)])

)
= p2

(
1 +

(
2A− 1

2A

)
ah

α
e
− p2
Ap1 − 1

1− e−
p2
Ap1

)
.

Example of parameters that fall in this category: c(e) = e2, ah = 2 and p1 = 1 and
p2 = 1.

Second Stage Contest

As derived in the proof of Proposition 7, for given beliefs µw and µs, the expected
output distribution of the weak and strong contestants are

L∗s2(x) =

{
kxα

p2(1−µs) , 0 ≤ x ≤ x∗s

1, x∗s ≤ x ≤ x∗
, H∗s2(x) =


0, 0 ≤ x ≤ x∗s

kxα−kx∗sα
p2µs

, x∗s ≤ x ≤ x∗w

1− kx∗α−kxα
ahαp2µw

, x∗w ≤ x ≤ x∗
,

L∗w2(x) =


kxα

p2(1−µw)
+ µs−µw

1−µw

(
ah
α−1
ahα

)
, 0 ≤ x ≤ x∗s

1− kx∗w
α−kxα

ahαp2(1−µw)
, x∗s ≤ x ≤ x∗w

1, x∗w ≤ x ≤ x∗

, and

H∗w2(x) =

{
0, 0 ≤ x ≤ x∗w

1− kx∗α−kxα
ahαp2µw

, x∗w ≤ x ≤ x∗
.

The expected output distributions are characterized by

F ∗s2(x) =

{
k
p2
xα, 0 ≤ x ≤ x∗w

1− kx∗α−kxα
ahαp2

, x∗w ≤ x ≤ x∗
and

F ∗w2(x) =

{
k
p2
xα +

(
ah
α−1
ahα

)
(µs − µw), 0 ≤ x ≤ x∗s

1− kx∗α−kxα
ahαp2

, x∗s ≤ x ≤ x∗
,
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where

kx∗w
α = p2(1− µw),

kx∗s
α = p2(1− µs), and

kx∗α = p2(1− µw) + p2µwa
hα.
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