Two-Stage Contests with Private Information

Greg Kubitz

Online Appendix

Uniqueness of equilibrium with convex cost

In this section we show that Theorem 1 holds for more general cost of effort. We denote the cost function of effort as $c(e)$, which is the same for high and low ability contestants. The cost function is assumed to be twice differentiable on the non-negative reals, strictly increasing and weakly convex, with the cost of zero effort being zero.

Lemma A.1. In any equilibrium and for any history $\eta_{2}, B R_{i 2}^{\ell}\left(\sigma^{*}, \eta_{2}\right) \cup B R_{i 2}^{h}\left(\sigma^{*}, \eta_{2}\right)=$ $\left[0, x^{*}\right]$ for $i=s, w$ and $x^{*}>0$. Equilibrium output distributions, $H_{2 s}^{*}\left(x \mid \eta_{2}\right), L_{2 s}^{*}\left(x \mid \eta_{2}\right)$, $H_{2 w}^{*}\left(x \mid \eta_{2}\right)$, and $L_{2 w}^{*}\left(x \mid \eta_{2}\right)$, are continuous on $\left(0, x^{*}\right]$ and for $x \in B R_{i 2}^{\ell}\left(\sigma^{*}, \eta_{2}\right)$ and $x^{\prime} \in$ $B R_{i 2}^{h}\left(\sigma^{*}, \eta_{2}\right)$, then $x \leq x^{\prime}$.

Proof. The proof follows in three steps:
(1) We first show there is no output at which both contestants have an atom and if a contestant has an atom, it is at zero. It follows that $F_{i 2}^{*}\left(x \mid \eta_{2}\right)$ are continuous on $(0, \infty)$ for $i=s, w$ and any η_{2}.

Assume both contestants produce x with positive probability. Because the cost of effort is continuous, either contestant can improve payoffs by producing output slightly above this atom. Then x is not a best response of that contestant, a contradiction.

Assume that contestant i produces $x>0$ with positive probability. Then by the continuity of the cost function in output, there is a $\delta>0$ such that for all $\hat{x} \in(x-\delta, x)$, $\hat{x} \notin B R_{-i 2}^{\theta}\left(\sigma^{*}, \eta_{2}\right)$ for $\theta=\ell, h$. This implies, that contestant i would do better by playing $x-\delta / 2$, and therefore $x \notin B R_{i 2}^{\theta}\left(\sigma^{*}, \eta_{2}\right)$, a contradiction.
(2) Next, if $\hat{x}>0$ is not a best response for any ability of one of the contestants, then for all $x>\hat{x}, x$ is not a best response for either type of either contestant.

Step (1) implies that equilibrium payoffs are continuous over positive outputs. Given $x^{\prime} \notin B R_{i 2}^{\ell}\left(\sigma^{*}, \eta_{2}\right) \cup B R_{i 2}^{h}\left(\sigma^{*}, \eta_{2}\right)$, for some $i=s, w, \exists \tilde{x}^{h}, \tilde{x}^{\ell}$ for which $\mathbb{E}\left[\pi_{i 2}\left(\tilde{x}^{h}\right) \mid a^{h}, \sigma^{*}, \eta_{2}\right]>$ $\mathbb{E}\left[\pi_{i 2}\left(x^{\prime}\right) \mid a^{h}, \sigma^{*}, \eta_{2}\right]+\varepsilon$ and $\mathbb{E}\left[\pi_{i 2}\left(\tilde{x}^{\ell}\right) \mid a^{\ell}, \sigma^{*}, \eta_{2}\right]>\mathbb{E}\left[\pi_{i 2}\left(x^{\prime}\right) \mid a^{\ell}, \sigma^{*}, \eta_{2}\right]+\varepsilon$. Then, every output in the neighborhood of x^{\prime} in this neighborhood cannot be a best response of either type of contestant i, and therefore also cannot be a best response for any type of contestant $-i$, who could improve expected payoffs by lowering output.

Define $X^{*}=\left\{x \mid x>\hat{x}\right.$ and $\left.x \in B R_{i 2}^{\ell}\left(\sigma^{*}, \eta_{2}\right) \cup B R_{i 2}^{h}\left(\sigma^{*}, \eta_{2}\right)\right\}$. Let $x_{*}=\inf \left\{X^{*}\right\}$. Then, there is a neighborhood below x_{*} for which all outputs are not best responses for any ability type of either contestant. By continuity of payoffs, this would imply that there is an $x \in X^{*}$ that gives lower expected payoffs than \hat{x} for both types of each contestant, a contradiction. Therefore, x_{*} does not exist and X^{*} is empty. This implies that $\sup \left\{B R_{s 2}^{\ell}\left(\sigma^{*}, \eta_{2}\right) \cup B R_{s 2}^{h}\left(\sigma^{*}, \eta_{2}\right)\right\}=\sup \left\{B R_{w 2}^{\ell}\left(\sigma^{*}, \eta_{2}\right) \cup B R_{w 2}^{h}\left(\sigma^{*}, \eta_{2}\right)\right\} \equiv x^{*}$ and
the combined best response sets of each contestant is $\left[0, x^{*}\right]$.
(3) In any equilibrium, for $x \in B R_{i 2}^{\ell}\left(\sigma^{*}, \eta_{2}\right)$ and $x^{\prime} \in B R_{i 2}^{h}\left(\sigma^{*}, \eta_{2}\right)$, then $x \leq x^{\prime}$.

Assume otherwise, $\exists x \in B R_{i 2}^{\ell}\left(\sigma^{*}, \eta_{2}\right)$ and $x^{\prime} \in B R_{i 2}^{h}\left(\sigma^{*}, \eta_{2}\right)$, with $x>x^{\prime}$. Then

$$
\mathbb{E}\left[\pi_{i 2}(x)-\pi_{i 2}\left(x^{\prime}\right) \mid a^{\ell}, \sigma^{*}, \eta_{2}\right]=p_{2}\left(F_{i 2}^{*}\left(x \mid \eta_{2}\right)-F_{i 2}^{*}\left(x^{\prime} \mid \eta_{2}\right)\right)-\left(c(x)-c\left(x^{\prime}\right)\right) \geq 0
$$

Because the cost function is increasing and weakly convex, and $x>x^{\prime}$, then

$$
\mathbb{E}\left[\pi_{i 2}(x)-\pi_{i 2}\left(x^{\prime}\right) \mid a^{h}, \sigma^{*}, \eta_{2}\right]=p_{2}\left(F_{i 2}^{*}\left(x \mid \eta_{2}\right)-F_{i 2}^{*}\left(x^{\prime} \mid \eta_{2}\right)\right)-\left(c\left(x / a^{h}\right)-c\left(x^{\prime} / a^{h}\right)\right)>0
$$

This contradicts $x^{\prime} \in B R_{i 2}^{h}\left(\sigma^{*}, \eta_{2}\right)$.

Proof of Proposition 7

From Lemma A.1, there are x_{s}^{*} and x_{w}^{*} such that $x_{i}^{*}=\sup \left\{B R_{i 2}^{\ell}\left(\sigma^{*}, \eta_{2}\right)\right\}=\inf \left\{B R_{i 2}^{h}\left(\sigma^{*}, \eta_{2}\right)\right\}$, for $i=s, w$, and $x^{*} \equiv \sup \left\{B R_{i 2}^{h}\left(\sigma^{*}, \eta_{2}\right)\right\}$ which is the same for $i=s, w$.

Each contestant must be indifferent between all $x \in\left(x_{i}^{*}, x^{*}\right)$ when they have high ability. Each high ability contestant has the same marginal cost of output so indifference implies that the expected output density must also be the same: $f_{s 2}^{*}(x)=f_{w 2}^{*}(x)$ for $x \in\left(\max \left\{x_{s}^{*}, x_{w}^{*}\right\}, x^{*}\right)$. Since $f_{i 2}^{*}(x)=\mu_{i} h_{i 2}^{*}(x)$ for all $x \in\left(x_{i}^{*}, x^{*}\right)$, then $h_{s 2}^{*}(x) \leq h_{w 2}^{*}(x)$ for all $x \in\left(\max \left\{x_{s}^{*}, x_{w}^{*}\right\}, x^{*}\right)$. Then $H_{i 2}\left(x_{i}^{*}\right)=0$, requires that $x_{s}^{*} \leq x_{w}^{*}$.

Therefore, for the remainder of the construction, there are three intervals to consider: the best response set of the low types of both the stronger and the weaker contestants, $0 \leq x \leq x_{s}^{*}$, the best response set of the low type of the weaker contestant and the high type of the strong contestant, $x_{s}^{*} \leq x \leq x_{w}^{*}$, and best response set of the high types of each contestant, $x_{w}^{*} \leq x \leq x^{*}$.

Within their best response sets, contestants must be indifferent between all output levels. For example, the strong contestant with high ability must be indifferent to picking all outputs between x_{s}^{*} and x^{*}. This puts a condition on $F_{w 2}(x)$, the output distribution of the weak contestant, on the interval $\left[x_{s}^{*}, x^{*}\right]$:

$$
p_{2} F_{w 2}^{*}\left(x^{\prime}\right)-c\left(\frac{x}{a^{h}}\right)=p_{2} F_{w 2}^{*}\left(x^{\prime}\right)-c\left(\frac{x^{\prime}}{a^{h}}\right) .
$$

Rearranging and taking the limit as $x \rightarrow x^{\prime}, \lim _{x \rightarrow x^{\prime}} \frac{F_{w 2}^{*}(x)-F_{w^{2}}^{*}\left(x^{\prime}\right)}{c\left(\frac{x}{a^{h}}\right)-c\left(\frac{x^{\prime}}{a^{h}}\right)}=\frac{1}{p_{2}}$. Then the output density of the strong contestant is

$$
f_{w 2}^{*}\left(x^{\prime}\right)=\lim _{x \rightarrow x^{\prime}} \frac{F_{w 2}^{*}(x)-F_{w 2}^{*}\left(x^{\prime}\right)}{c\left(\frac{x}{a^{h}}\right)-c\left(\frac{x^{\prime}}{a^{h}}\right)} \frac{c\left(\frac{x}{a^{h}}\right)-c\left(\frac{x^{\prime}}{a^{h}}\right)}{a^{h}\left(\frac{1}{a^{h}}\left(x-x^{\prime}\right)\right)}=\frac{c^{\prime}\left(\frac{x^{\prime}}{a^{h}}\right)}{p_{2} a^{h}} .
$$

A similar calculation on each interval for each contestant allows us to characterize the densities of the output on each of the intervals below.

- $x_{w}^{*} \leq x \leq x^{*}: h_{s 2}^{*}(x)=\frac{c^{\prime}\left(x / a^{h}\right)}{p_{2} a^{h} \mu_{s}}, h_{w 2}^{*}(x)=\frac{c^{\prime}\left(x / a^{h}\right)}{p_{2} a^{h} \mu_{w}}, f_{s 2}^{*}(x)=f_{w 2}^{*}(x)=\frac{c^{\prime}\left(x / a^{h}\right)}{p_{2} a^{h}}$.
- $x_{s}^{*} \leq x \leq x_{w}^{*}: h_{s 2}^{*}(x)=\frac{c^{\prime}(x)}{p_{2} \mu_{s}}, \ell_{w 2}^{*}(x)=\frac{c^{\prime}\left(x / a^{h}\right)}{p_{2} a^{h}\left(1-\mu_{w}\right)}, f_{s 2}^{*}(x)=\frac{c^{\prime}(x)}{p_{2}}, f_{w 2}^{*}(x)=\frac{c^{\prime}\left(x / a^{h}\right)}{p_{2} a^{h}}$.
- $0 \leq x \leq x_{s}^{*}: \ell_{s 2}^{*}(x)=\frac{c^{\prime}(x)}{p_{2}\left(1-\mu_{s}\right)}, \ell_{w 2}^{*}(x)=\frac{c^{\prime}(x)}{p_{2}\left(1-\mu_{w}\right)}, f_{s 2}^{*}(x)=f_{w 2}^{*}(x)=\frac{c^{\prime}(x)}{p_{2}}$.

It remains to characterize the cutoff points, x_{w}^{*}, x_{s}^{*} and x^{*}, and $L_{w 2}^{*}(0)$. In equilibrium, the distribution of output for each contestant must satisfy

$$
L_{i 2}^{*}\left(x_{i}^{*}\right)=1, \quad H_{i 2}^{*}\left(x_{i}^{*}\right)=0, \quad F_{i 2}^{*}\left(x_{i}^{*}\right)=1-\mu_{i}, \quad \text { and } \quad F_{i 2}^{*}\left(x^{*}\right)=1 .
$$

Additionally, the strong contestant chooses no effort with zero probability, so $L_{s 2}^{*}(0)=$ 0 . Using $L_{s 2}^{*}\left(x_{s}^{*}\right)=1$ and the definition of $\ell_{s 2}^{*}(x)$ on $\left[0, x_{s}^{*}\right]$, we calculate x_{s}^{*}.

$$
\int_{0}^{x_{s}^{*}} \ell_{s 2}^{*}(x) d x=L_{s 2}^{*}\left(x_{s}^{*}\right)-L_{s 2}^{*}(0)=\frac{c\left(x_{s}^{*}\right)}{p_{2}\left(1-\mu_{s}\right)}=1
$$

Then $c\left(x_{s}^{*}\right)=p_{2}\left(1-\mu_{s}\right)$, so that $x_{s}^{*}=c^{-1}\left(p_{2}\left(1-\mu_{s}\right)\right)$. Similarly, $x_{w}^{*}=c^{-1}\left(p_{2}\left(1-\mu_{w}\right)\right)$. From these endpoints we can calculate x^{*}.

$$
\begin{gathered}
\int_{x_{s}^{*}}^{x_{w}^{*}} h_{s 2}^{*}(x) d x=\frac{c\left(x_{w}^{*}\right)-c\left(x_{s}^{*}\right)}{\mu_{s}}=\frac{\left(1-\mu_{w}\right)-\left(1-\mu_{s}\right)}{\mu_{s}}=\frac{\mu_{s}-\mu_{w}}{\mu_{s}} \\
\int_{x_{w}^{*}}^{x^{*}} h_{s 2}^{*}\left(x_{s}\right) d x=1-\frac{\mu_{s}-\mu_{w}}{\mu_{s}}=\frac{\mu_{w}}{\mu_{s}} \\
\int_{x_{w}^{*}}^{x^{*}} f_{s 2}^{*}\left(x_{s}\right) d x=\frac{1}{p_{2}}\left(c\left(\frac{x^{*}}{a^{h}}\right)-c\left(\frac{c^{-1}\left(p_{2}\left(1-\mu_{w}\right)\right)}{a^{h}}\right)\right)=\mu_{w} \\
x^{*}=a^{h} c^{-1}\left(p_{2} \mu_{w}+c\left(\frac{c^{-1}\left(p_{2}\left(1-\mu_{w}\right)\right)}{a^{h}}\right)\right)
\end{gathered}
$$

Lastly, we pin down the probability that the weaker contestant exerts no effort.

$$
\begin{gathered}
\int_{x_{s}^{*}}^{x_{w}^{*}} \ell_{w 2}^{*}(x) d x=\frac{1}{p_{2}\left(1-\mu_{w}\right)}\left[c\left(\frac{c^{-1}\left(p_{2}\left(1-\mu_{w}\right)\right)}{a^{h}}\right)-c\left(\frac{c^{-1}\left(p_{2}\left(1-\mu_{s}\right)\right)}{a^{h}}\right)\right] \\
\int_{0}^{x_{s}^{*}} \ell_{w 2}^{*}(x) d x=\frac{c\left(c^{-1}\left(p_{2}\left(1-\mu_{s}\right)\right)\right)}{p_{2}\left(1-\mu_{w}\right)}-0=\frac{1-\mu_{s}}{1-\mu_{w}} \\
L_{w 2}^{*}(0)=\mu_{s}-\mu_{w}-\frac{1}{p_{2}\left(1-\mu_{w}\right)}\left[c\left(\frac{c^{-1}\left(p_{2}\left(1-\mu_{w}\right)\right)}{a^{h}}\right)-c\left(\frac{c^{-1}\left(p_{2}\left(1-\mu_{s}\right)\right)}{a^{h}}\right)\right]
\end{gathered}
$$

Lemma A.2. Given history $\eta_{2}=\left(x_{s 1}, x_{w 1}\right)$ with associated beliefs, $\mu_{s} \geq \mu_{w}$, the second contest continuation value of each contestant conditional on their ability are

$$
\begin{aligned}
v_{s}^{h}\left(\mu_{s}, \mu_{w}\right) & =v_{w}^{h}\left(\mu_{w}, \mu_{s}\right)=p_{2}\left(1-\mu_{w}\right)-c\left(\frac{c^{-1}\left(p_{2}\left(1-\mu_{w}\right)\right)}{a^{h}}\right) \\
v_{s}^{\ell}\left(\mu_{s}, \mu_{w}\right) & =p_{2}\left(\mu_{s}-\mu_{w}\right)-\left[c\left(\frac{c^{-1}\left(p_{2}\left(1-\mu_{w}\right)\right)}{a^{h}}\right)-c\left(\frac{c^{-1}\left(p_{2}\left(1-\mu_{s}\right)\right)}{a^{h}}\right)\right] \\
& =v_{w}^{\ell}\left(\mu_{w}, \mu_{s}\right)=0
\end{aligned}
$$

Proof. The expected payoffs of a high ability contestant are equal to the value of winning less the cost of producing output x^{*}, as producing x^{*} guarantees a win.

$$
v_{s}^{h}\left(\mu_{s}, \mu_{w}\right)=v_{w}^{h}\left(\mu_{w}, \mu_{s}\right)=p_{2}-c\left(x^{*} / a^{h}\right)=p_{2}\left(1-\mu_{w}\right)-c\left(\frac{c^{-1}\left(p_{2}\left(1-\mu_{w}\right)\right)}{a^{h}}\right)
$$

The expected payoffs of low ability contestants is equal to the probability they win given they exert no effort. This is the probability the other contestant puts in no effort. ${ }^{1}$

$$
\begin{aligned}
v_{s}^{\ell}\left(\mu_{s}, \mu_{w}\right) & =p_{2}\left(1-\mu_{w}\right) L_{w 2}^{*}(0) \\
& =p_{2}\left(\mu_{s}-\mu_{w}\right)-\left[c\left(\frac{c^{-1}\left(p_{2}\left(1-\mu_{w}\right)\right)}{a^{h}}\right)-c\left(\frac{c^{-1}\left(p_{2}\left(1-\mu_{s}\right)\right)}{a^{h}}\right)\right] \\
v_{w}^{\ell}\left(\mu_{w}, \mu_{s}\right) & =p_{2}\left(1-\mu_{s}\right) L_{s 2}^{*}(0)=0
\end{aligned}
$$

Proposition A.1. Let $F_{\mu_{-i}}(M)=\operatorname{Pr}\left(\mu_{-i} \leq M\right)$ be the belief distribution of contestant $-i$'s ability resulting from the first contest, and let $\underline{M}=\sup \left\{M \mid F_{\mu_{-i}}(M)=0\right\}$ and $\bar{M}=\inf \left\{M \mid F_{\mu_{-i}}(M)=1\right\}$. For all $\mu_{i} \in(\underline{M}, \bar{M})$, expected payoffs in the second contest decrease for high ability players as μ_{i} increases, $\frac{\partial}{\partial \mu_{i}} \mathbb{E}\left[v_{i}^{h}\left(\mu_{i}, \mu_{-i}\right)\right]<0$, and increase with μ_{i} for low ability players, $\frac{\partial}{\partial \mu_{i}} \mathbb{E}\left[v_{i}^{\ell}\left(\mu_{i}, \mu_{-i}\right)\right]>0$.

Proof. In the second contest, for a given pair of beliefs, contestants will expect the following payoffs:

$$
\begin{gathered}
v_{i}^{h}\left(\mu_{i}, \mu_{-i}\right)=p_{2}\left(1-\min \left\{\mu_{i}, \mu_{-i}\right\}\right)-c\left(\frac{c^{-1}\left(p_{2}\left(1-\min \left\{\mu_{i}, \mu_{-i}\right\}\right)\right)}{a^{h}}\right) \\
v_{i}^{\ell}\left(\mu_{i}, \mu_{-i}\right)=\left\{\begin{array}{cc}
p_{2}\left(\mu_{i}-\mu_{-i}\right)-\left[c\left(\frac{c^{-1}\left(p_{2}\left(1-\mu_{-i}\right)\right)}{a^{h}}\right)-c\left(\frac{c^{-1}\left(p_{2}\left(1-\mu_{i}\right)\right)}{a^{h}}\right)\right], & \text { if } \mu_{i} \geq \mu_{-1} \\
0, & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

For a high ability contestant believed to be high ability with probability μ_{i} and with opponent's belief distribution, $F_{\mu_{-i}}$, the expected payoff in the second contest is

$$
\begin{aligned}
& \mathbb{E}\left[v_{i}^{h}\left(\mu_{i}, \mu_{-i}\right)\right] \\
& =\int_{0}^{1}\left(p_{2}\left(1-\min \left\{\mu_{i}, \mu_{-i}\right\}\right)-c\left(\frac{c^{-1}\left(p_{2}\left(1-\min \left\{\mu_{i}, \mu_{-i}\right\}\right)\right)}{a^{h}}\right)\right) d F_{\mu_{-i}}\left(\mu_{-i}\right) .
\end{aligned}
$$

As the opponent believes the contestant is stronger, the change in expected payoff is

$$
\frac{\partial}{\partial \mu_{i}} \mathbb{E}_{\mu_{-i}}\left[v_{i}^{h}\left(\mu_{i}, \mu_{-i}\right)\right]=\left(p_{2}+\frac{\partial}{\partial \mu_{i}} c\left(\frac{c^{-1}\left(p_{2}\left(1-\mu_{i}\right)\right)}{a^{h}}\right)\right)\left(F_{\mu_{-i}}\left(\mu_{i}\right)-1\right) .
$$

[^0]For a low ability contestant, the expected payoff is

$$
\begin{aligned}
& \mathbb{E}\left[v_{i}^{\ell}\left(\mu_{i}, \mu_{-i}\right)\right] \\
& =\int_{0}^{\mu_{i}}\left(p_{2}\left(\mu_{i}-\mu_{-i}\right)+c\left(\frac{c^{-1}\left(p_{2}\left(1-\mu_{i}\right)\right)}{a^{h}}\right)-c\left(\frac{c^{-1}\left(p_{2}\left(1-\mu_{-i}\right)\right)}{a^{h}}\right)\right) d F_{\mu_{-i}}\left(\mu_{-i}\right),
\end{aligned}
$$

with change in expected payoff

$$
\frac{\partial}{\partial \mu_{i}} \mathbb{E}\left[v_{i}^{\ell}\left(\mu_{i}, \mu_{-i}\right)\right]=\left(p_{2}+\frac{\partial}{\partial \mu_{i}} c\left(\frac{c^{-1}\left(p_{2}\left(1-\mu_{i}\right)\right)}{a^{h}}\right)\right) F_{\mu_{-i}}\left(\mu_{i}\right) .
$$

Given the assumptions on the cost of effort, $c^{\prime}(e)>0$ and $c^{\prime \prime}(e) \geq 0$,

$$
\frac{\partial}{\partial \mu_{i}} c\left(\frac{c^{-1}\left(p_{2}\left(1-\mu_{i}\right)\right)}{a^{h}}\right)=-\frac{1}{a^{h}} c^{\prime}\left(\frac{c^{-1}\left(p_{2}\left(1-\mu_{i}\right)\right)}{a^{h}}\right) \frac{1}{c^{\prime}\left(c^{-1}\left(p_{2}\left(1-\mu_{i}\right)\right)\right)} \in\left[-\frac{p_{2}}{a^{h}}, 0\right) .
$$

Define $d\left(\mu_{i}\right) \equiv\left[p_{2}+\frac{\partial}{\partial \mu_{i}} c\left(\frac{c^{-1}\left(p_{2}\left(1-\mu_{i}\right)\right)}{a_{h}}\right)\right]$. For all $\mu_{i}, d\left(\mu_{i}\right) \in\left[\frac{p_{2}\left(a^{h}-1\right)}{a^{h}}, p_{2}\right)$. It follows that

$$
\frac{\partial}{\partial \mu_{i}} E\left[v_{i}^{h}\left(\mu_{i}, \mu_{-i}\right)\right]=d\left(\mu_{i}\right)\left(F_{\mu_{-i}}\left(\mu_{i}\right)-1\right) \text { and } \frac{\partial}{\partial \mu_{i}} E\left[v_{i}^{\ell}\left(\mu_{i}, \mu_{-i}\right)\right]=d\left(\mu_{i}\right) F_{\mu_{-i}}\left(\mu_{i}\right),
$$

where the former derivative is strictly negative and the later is strictly positive when $\mu_{i} \in\left(\underline{M}_{-i}, \bar{M}_{-i}\right)$.

Lemma A.3. In every SPBE, $\mu^{*}(x)$ is weakly increasing in x for all $x \in X_{i 1} \equiv$ $X_{i 1}^{h} \cup X_{i 1}^{\ell}$.
Proof. Let $x, x^{\prime} \in X_{i 1}$ such that $x<x^{\prime}$ and $\mu(x)>\mu\left(x^{\prime}\right)$. Then $0 \leq \mu\left(x^{\prime}\right)<\mu(x) \leq 1$ which implies $x \in X_{i 1}^{h} \subseteq B R_{i 1}^{h}$ and $x^{\prime} \in X_{i 1}^{\ell} \subseteq B R_{i 1}^{\ell}$. Best responses require

$$
\begin{aligned}
p_{1} \mathbb{E}\left[w_{i}\left(x^{\prime}, x_{-i 1}\right)\right]-c\left(x^{\prime}\right) & +\mathbb{E}\left[v_{i}^{\ell}\left(\mu\left(x^{\prime}\right), \mu\left(x_{-i 1}\right)\right)\right] \\
& \geq p_{1} \mathbb{E}\left[w_{i}\left(x, x_{-i 1}\right)\right]-c(x)+\mathbb{E}\left[v_{i}^{\ell}\left(\mu(x), \mu\left(x_{-i 1}\right)\right)\right], \text { and } \\
p_{1} \mathbb{E}\left[w_{i}\left(x^{\prime}, x_{-i 1}\right)\right]-c\left(x^{\prime} / a^{h}\right) & +\mathbb{E}\left[v_{i}^{h}\left(\mu\left(x^{\prime}\right), \mu\left(x_{-i 1}\right)\right)\right] \\
& \leq p_{1} \mathbb{E}\left[w_{i}\left(x, x_{-i 1}\right)\right]-c\left(x / a^{h}\right)+\mathbb{E}\left[v_{i}^{h}\left(\mu(x), \mu\left(x_{-i 1}\right)\right)\right] .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
p_{1}\left(\mathbb{E}\left[w_{i}\left(x^{\prime}, x_{-i 1}\right)\right]-\mathbb{E}\left[w_{i}\left(x, x_{-i 1}\right)\right]\right) & +\mathbb{E}\left[v_{i}^{\ell}\left(\mu\left(x^{\prime}\right), \mu\left(x_{-i 1}\right)\right)\right]-\mathbb{E}\left[v_{i}^{\ell}\left(\mu(x), \mu\left(x_{-i 1}\right)\right)\right] \\
& \geq c\left(x^{\prime}\right)-c(x), \text { and } \\
p_{1}\left(\mathbb{E}\left[w_{i}\left(x^{\prime}, x_{-i 1}\right)\right]-\mathbb{E}\left[w_{i}\left(x, x_{-i 1}\right)\right]\right) & +\mathbb{E}\left[v_{i}^{h}\left(\mu\left(x^{\prime}\right), \mu\left(x_{-i 1}\right)\right)\right]-\mathbb{E}\left[v_{i}^{h}\left(\mu(x), \mu\left(x_{-i 1}\right)\right)\right] \\
& \leq c\left(x^{\prime} / a^{h}\right)-c\left(x / a^{h}\right) .
\end{aligned}
$$

From Proposition A.1, $\mu(x)>\mu\left(x^{\prime}\right)$ implies

$$
\begin{array}{r}
\quad \mathbb{E}\left[v_{i}^{\ell}\left(\mu\left(x^{\prime}\right), \mu\left(x_{-i 1}\right)\right)\right]-\mathbb{E}\left[v_{i}^{\ell}\left(\mu(x), \mu\left(x_{-i 1}\right)\right)\right] \leq 0, \\
\text { and } \mathbb{E}\left[v_{i}^{h}\left(\mu\left(x^{\prime}\right), \mu\left(x_{-i 1}\right)\right)\right]-\mathbb{E}\left[v_{i}^{h}\left(\mu(x), \mu\left(x_{-i 1}\right)\right)\right] \geq 0 .
\end{array}
$$

Combining the previous inequalities,

$$
c\left(x^{\prime}\right)-c(x) \leq p_{1}\left(\mathbb{E}\left[w_{i}\left(x^{\prime}, x_{-i 1}\right)\right]-\mathbb{E}\left[w_{i}\left(x, x_{-i 1}\right)\right]\right) \leq c\left(x^{\prime} / a^{h}\right)-c\left(x / a^{h}\right),
$$

which cannot be true given $a^{h}>1, c^{\prime \prime}(x) \geq 0$ and $c^{\prime}(x)>0$.
Proposition A.2. Given $p_{1}=0$ and $p_{2}>0$, there is a unique SPBE where $X_{i 1}=\{0\}$.
Proof. Equilibrium conditions are satisfied when $H_{1}^{*}(x)=L_{1}^{*}(x)=1$ for $x \geq 0$ and 0 otherwise (i.e. the output densities of both high and low ability contestants consist of a single mass point at $x=0$), $\mu^{*}(x)=\hat{\mu}$ for $x \geq 0$, and second period distribution functions are as characterized in the proof of Proposition 7.

To show that there can be no equilibrium where $\tilde{x} \in X_{i 1}$, such that $\tilde{x}>0$, assume that there is. Then $\tilde{x} \in B R_{i 1}^{\ell}\left(\sigma_{-i}\right) \cup B R_{i 1}^{h}\left(\sigma_{-i}\right)$. If $\tilde{x} \in B R_{i 1}^{\ell}\left(\sigma_{-i}\right)$ then $\mathbb{E}\left[v_{i}^{\ell}\left(\mu(\tilde{x}), \mu\left(x_{-i 1}\right)\right)\right]-$ $\mathbb{E}\left[v_{i}^{\ell}\left(\mu(0), \mu\left(x_{-i 1}\right)\right)\right] \geq c(\tilde{x})>0$ which implies that $\mu(\tilde{x})>\mu(0) \geq 0$. Because $\mu(\tilde{x})>0$, equilibrium conditions on the belief function require that $\tilde{x} \in X_{i 1}^{h} \subset B R_{i 1}^{h}$ and therefore $\mathbb{E}\left[v_{i}^{h}\left(\mu(\tilde{x}), \mu\left(x_{-i 1}\right)\right)\right]-\mathbb{E}\left[v_{i}^{h}\left(\mu(0), \mu\left(x_{-i 1}\right)\right)\right] \geq c\left(\frac{\tilde{x}}{a^{h}}\right)>0$, which cannot be true when $\mu(\tilde{x})>\mu(0)$, a contradiction.

If $\tilde{x} \in B R_{i 1}^{h}\left(\sigma_{-i}\right) \backslash B R_{i 1}^{\ell}\left(\sigma_{-i}\right)$, then $\mu(\tilde{x})<\mu(0)$ which implies by Lemma A. 3 that $0 \notin X_{i 1}$. This however would require the existence of a positive output in $B R_{i 1}^{\ell}\left(\sigma_{-i}\right)$, which we just ruled out.

Lemma A.4. Let $p_{1}>0$. For any SPBE, first contest output distributions are continuous and therefore $\mathbb{E}\left[w_{i}\left(x_{i 1}, x_{-i 1}\right) \mid x_{i 1}\right]=F_{1}^{*}\left(x_{i 1}\right)=\hat{\mu} H_{1}^{*}\left(x_{i 1}\right)+(1-\hat{\mu}) L_{1}^{*}\left(x_{i 1}\right)$ is continuous.
Proof. In a symmetric equilibrium, if an output is played with positive probability by one type of contestant, then it must be played with positive probability by both contestants of this type. Let $\tilde{x} \in\left\{X_{i 1}^{\ell} \cup X_{i 1}^{h}\right\}$ be played with probability $q>0$. Then

$$
\mathbb{E}\left[w_{i}\left(\tilde{x}, x_{-i 1}\right)\right]+\frac{q}{2} \leq \mathbb{E}\left[w_{i}\left(x, x_{-i 1}\right)\right] \text { for all } x>\tilde{x}
$$

Since, $\tilde{x} \in B R_{i 1}^{\theta}\left(\sigma_{-i}\right)$, for some θ, then for all $x \geq 0$,

$$
\begin{aligned}
p_{1} \mathbb{E}\left[w_{i}\left(\tilde{x}, x_{-i 1}\right)\right] & -c\left(\tilde{x} / a^{\theta}\right)+\mathbb{E}\left[v_{i}^{\theta}\left(\mu_{i}(\tilde{x}), \mu_{-i}\right)\right] \\
& \geq p_{1} \mathbb{E}\left[w_{i}\left(x, x_{-i 1}\right)\right]-c\left(x / a^{\theta}\right)+\mathbb{E}\left[v_{i}^{\theta}\left(\mu_{i}(x), \mu_{-i}\right)\right]
\end{aligned}
$$

Combining the above inequalities,

$$
p_{1} \frac{q}{2} \leq \mathbb{E}\left[v_{i}^{\theta}\left(\mu_{i}(\tilde{x}), \mu_{-i}\right)\right]-\mathbb{E}\left[v_{i}^{\theta}\left(\mu_{i}(x), \mu_{-i}\right)\right]+c\left(x / a^{\theta}\right)-c\left(\tilde{x} / a^{\theta}\right)
$$

By continuity of the cost function, $\exists \varepsilon>0$ such that for all $x \in(\tilde{x}, \tilde{x}+\varepsilon)$, we have $c\left(\frac{\tilde{x}+\varepsilon}{a^{\theta}}\right)-c\left(\frac{\tilde{x}}{a^{\theta}}\right)<p_{1} \frac{q}{2}$. Then for each x in this range

$$
\begin{equation*}
\mathbb{E}\left[v_{i}^{\theta}\left(\mu_{i}(\tilde{x}), \mu_{-i}\right)\right]-\mathbb{E}\left[v_{i}^{\theta}\left(\mu_{i}(x), \mu_{-i}\right)\right]>0 \tag{1}
\end{equation*}
$$

From Proposition A.1, if $\theta=\ell$, then $\mu_{i}(\tilde{x})>\mu_{i}(x)$ and $\tilde{x} \in\left\{X_{i 1}^{\ell} \cap X_{i 1}^{h}\right\}$. Similarly, if $\theta=h$, then $\mu_{i}(\tilde{x})<\mu_{i}(x)$ and $\tilde{x} \in\left\{X_{i 1}^{\ell} \cap X_{i 1}^{h}\right\}$. In either case, $\tilde{x} \in\left\{B R_{i 1}^{\ell}\left(\sigma_{-i}\right) \cap\right.$ $\left.B R_{i 1}^{h}\left(\sigma_{-i}\right)\right\}$. However, (1) cannot hold for both $\theta=\ell$ and $\theta=h$, a contradiction.

Lemma A.5. Let $p_{1}, p_{2}>0$. Define $x_{\ell *}=\inf X_{i 1}^{\ell}, x_{\ell}^{*}=\sup X_{i 1}^{\ell}, x_{h *}=\inf X_{i 1}^{h}$, and $x_{h}^{*}=\sup X_{i 1}^{h}$. In any SPBE, the best response sets of low and high ability contestants in the first contest are intervals with $B R_{i 1}^{\ell}\left(\sigma^{*}\right)=\left[0, x_{\ell}^{*}\right], B R_{i 1}^{h}\left(\sigma^{*}\right)=\left[x_{h *}, x_{h}^{*}\right]$ and $0=x_{\ell *} \leq x_{h *}<x_{\ell}^{*} \leq x_{h}^{*}$.
Proof. From Lemma A. 4 we now can use the fact that $L_{1}^{*}(x)$ and $H_{1}^{*}(x)$, and therefore $F_{1}^{*}(x)$, are continuous in x and we have that in equilibrium $\mathbb{E}\left[w_{i}\left(x, x_{-i 1}\right)\right]=$ $\operatorname{Pr}\left(x_{-i 1}<x \mid \sigma_{-i}^{*}\right)=\operatorname{Pr}\left(x_{-i 1} \leq x \mid \sigma_{-i}^{*}\right)=F_{1}^{*}(x)$. Combined with Lemma A.3, we have $\operatorname{Pr}\left(\mu^{*}\left(x_{-i 1}\right)<\mu^{*}(x) \mid \sigma_{-i}^{*}\right) \leq \mathbb{E}\left[w_{i}\left(x, x_{-i 1}\right)\right]=F_{1}^{*}(x) \leq \operatorname{Pr}\left(\mu^{*}\left(x_{-i 1}\right) \leq \mu^{*}(x) \mid \sigma_{-i}^{*}\right)=$ $F_{\mu_{-i}}\left(\mu^{*}(x)\right)$. The proof follows in four steps.
(1) We first show that $x_{\ell *}=0$. We do this by first showing that $x_{\ell *} \leq x_{h *}$, and then showing that $x_{\ell *}$ cannot be larger than zero.

Let $x_{h *}<x_{\ell *}$. Since $x_{h *}=\inf X_{i 1}^{h}, \forall \varepsilon>0, \exists x_{\varepsilon}$ such that $x_{h *} \leq x_{\varepsilon}<x_{h *}+\varepsilon$ and $x_{\varepsilon} \in X_{i 1}^{h}$. In particular, this holds for $\varepsilon^{*}=x_{\ell *}-x_{h *}$. Then $x_{\varepsilon^{*}} \in\left\{X_{i 1}^{h} \backslash X_{i 1}^{\ell}\right\}$ and $\mu^{*}\left(x_{\varepsilon^{*}}\right)=1$. However, from Lemma A. 3 we would have $\mu^{*}(x)=1$ for all $x \in X_{i 1}^{\ell}$, which cannot hold. Therefore $x_{h *} \geq x_{\ell *}$.

If $0<x_{\ell *}<x_{h *}$, then by Lemma A.4, $\exists \delta$ with $0<\delta<x_{h *}-x_{\ell *}$ such that $\forall x \in\left(x_{\ell *}, x_{\ell *}+\delta\right)$ we have $\left|p_{1}\left(F_{1}^{*}(x)-F_{1}^{*}(0)\right)\right|=\left|p_{1}\left(F_{1}^{*}(x)-F_{1}^{*}\left(x_{\ell *}\right)\right)\right|<c\left(x_{\ell *}\right)$. Let $x_{\delta} \in X_{i 1}^{\ell} \cap\left(x_{\ell *}, x_{\ell *}+\delta\right)$. Then $\mu\left(x_{\delta}\right)=0$ and $p_{1}\left(F_{1}^{*}\left(x_{\delta}\right)-F_{1}^{*}(0)\right)<c\left(x_{\delta}\right)$. However this implies

$$
p_{1} F_{1}^{*}(0)+\mathbb{E}\left[v_{i}^{\ell}\left(\mu(0), \mu_{-i}\right)\right]>p_{1} F_{1}^{*}\left(x_{\delta}\right)+\mathbb{E}\left[v_{i}^{\ell}\left(\mu\left(x_{\delta}\right), \mu_{-i}\right)\right]-c\left(x_{\delta}\right),
$$

and therefore $x_{\delta} \notin B R_{i 1}^{\ell}\left(\sigma_{-i}\right)$, a contradiction.
If $0<x_{\ell *}=x_{h *}$, then $\exists x_{\ell}, x_{h}$ such that $x_{\ell} \leq x_{h}, x_{\ell} \in X_{i 1}^{\ell}, x_{h} \in X_{i 1}^{h}$, and $p_{1}\left(F_{1}^{*}\left(x_{\ell}\right)-\right.$ $\left.F_{1}^{*}\left(x_{\ell *}\right)\right)=p_{1} F_{1}^{*}\left(x_{\ell}\right)<c\left(x_{\ell *}\right)<c\left(x_{\ell}\right)$ and $p_{1}\left(F_{1}^{*}\left(x_{h}\right)-F_{1}^{*}\left(x_{h *}\right)\right)=p_{1} F_{1}^{*}\left(x_{h}\right)<$ $c\left(x_{h *} / a_{h}\right)<c\left(x_{h} / a_{h}\right)$, by the continuity of $F_{1}^{*}(x)$. It follows that $x_{\ell} \in X_{i 1}^{\ell}$ implies

$$
p_{1} F_{1}^{*}\left(x_{\ell}\right)-c\left(x_{\ell}\right)+E\left[v_{i}^{\ell}\left(\mu\left(x_{\ell}\right), \mu_{-i}\right)\right] \geq p_{1} F_{1}^{*}(0)-c(0)+\mathbb{E}\left[v_{i}^{\ell}\left(\mu(0), \mu_{-i}\right)\right]
$$

and $\mathbb{E}\left[v_{i}^{\ell}\left(\mu\left(x_{\ell}\right), \mu_{-i}\right)\right]>\mathbb{E}\left[v_{i}^{\ell}\left(\mu(0), \mu_{-i}\right)\right]$, which requires $\mu\left(x_{\ell}\right)>\mu(0)$.
Similarly, $x_{h} \in X_{i 1}^{h}$ implies that $\mu\left(x_{h}\right)<\mu(0)$. Combining these two inequalities leads to $\mu\left(x_{h}\right)<\mu\left(x_{\ell}\right)$. This contradicts Lemma A.3. Therefore we must have $0=x_{\ell *} \leq x_{h *}$.
(2) We next show that $x_{h *} \leq x_{\ell}^{*}$.

If $x_{\ell}^{*}<x_{h *}$, then $\forall x \in\left(x_{\ell}^{*}, x_{h *}\right), x \notin\left\{X_{i 1}^{\ell} \cup X_{i 1}^{h}\right\}$. Let $\tilde{x}=\frac{x_{\ell}^{*}+x_{h *}}{2}$ and $\varepsilon=c\left(x_{h *} / a^{h}\right)-$ $c\left(\tilde{x} / a^{h}\right)$. There is a $\delta>0$ such that $\forall x \in\left(x_{h *}, x_{h *}+\delta\right), p_{1}\left(F_{1}^{*}(x)-F_{1}^{*}\left(x_{h *}\right)\right)<\varepsilon$. Pick an x_{δ} such that $x_{\delta} \in\left(x_{h *}, x_{h *}+\delta\right)$ and $x_{\delta} \in X_{i 1}^{h}$. Then $p_{1}\left(F_{1}\left(x_{\delta}\right)-F_{1}\left(x_{h *}\right)\right)=p_{1}\left(F_{1}\left(x_{\delta}\right)-\right.$ $\left.F_{1}\left(x^{\prime}\right)\right)<\varepsilon, c\left(x_{\delta} / a^{h}\right)-c\left(\tilde{x} / a^{h}\right)>\varepsilon$, and $\mathbb{E}\left[v_{i}^{h}\left(\mu\left(x_{\delta}\right), \mu_{-i}\right)\right] \leq \mathbb{E}\left[v_{i}^{h}\left(\mu(\tilde{x}), \mu_{-i}\right)\right]$. Then

$$
p_{1} F_{1}^{*}(\tilde{x})+\mathbb{E}\left[v_{i}^{h}\left(\mu(\tilde{x}), \mu_{-i}\right)\right]-c\left(\frac{\tilde{x}}{a^{h}}\right)>p_{1} F_{1}^{*}\left(x_{\delta}\right)+\mathbb{E}\left[v_{i}^{h}\left(\mu\left(x_{\delta}\right), \mu_{-i}\right)\right]-c\left(\frac{x_{\delta}}{a^{h}}\right),
$$

a contradiction. So we can conclude that $x_{\ell}^{*} \leq x_{h *}$.
Also $x_{\ell}^{*} \leq x_{h}^{*}$. If we assume otherwise, then we can find $x \in\left\{X_{i 1}^{\ell} \backslash X_{i 1}^{h}\right\}$ where $x>x_{h}^{*}$ and $\mu(x)=0$. Lemma A. 3 rules out this possibility.

We have shown so far that $0=x_{\ell *} \leq x_{h *} \leq x_{\ell}^{*} \leq x_{h}^{*}$.
(3) For all $x \in\left(x_{\ell *}, x_{h *}\right), x \in B R_{i 1}^{\ell}\left(\sigma_{-i}\right)$ and for all $x \in\left(x_{\ell}^{*}, x_{h}^{*}\right), x \in B R_{i 1}^{h}\left(\sigma_{-i}\right)$.

Given $x_{\ell *}<x_{h *}$, let $X_{c}^{\ell}=\left\{x \mid x \in\left(x_{\ell *}, x_{h *}\right) \backslash B R_{i 1}^{\ell}\left(\sigma_{-i}\right)\right\}$. If $x \in X_{c}^{\ell}$, then $\exists \varepsilon>0$ such that for all $x^{\prime} \in\left(x_{\ell, *}, x_{h, *}\right) \cap X_{i 1}^{\ell}$,

$$
p_{1} F_{1}^{*}(x)+\mathbb{E}\left[v_{i}^{\ell}\left(\mu(x), \mu_{-i}\right)\right]-c(x)<p_{1} F_{1}^{*}\left(x^{\prime}\right)+\mathbb{E}\left[v_{i}^{\ell}\left(\mu\left(x^{\prime}\right), \mu_{-i}\right)\right]-c\left(x^{\prime}\right)-\varepsilon,
$$

where $\mathbb{E}\left[v_{i}^{\ell}\left(\mu(x), \mu_{-i}\right)\right] \geq \mathbb{E}\left[v_{i}^{\ell}\left(\mu\left(x^{\prime}\right), \mu_{-i}\right)\right]$ as $\mu\left(x^{\prime}\right)=0$. Therefore $p_{1} F_{1}^{*}(x)-c(x)<$ $p_{1} F_{1}^{*}\left(x^{\prime}\right)-c\left(x^{\prime}\right)-\varepsilon$, and for all $x^{\prime}>x, p_{1}\left(F_{1}^{*}\left(x^{\prime}\right)-F_{1}^{*}(x)\right)>c\left(x^{\prime}\right)-c(x)-\varepsilon$.

Since $F_{1}^{*}(x)$ and $c(x)$ are continuous, then there is a $\delta_{\varepsilon}>0$ such that for all $x^{\prime} \in X_{i 1}^{\ell}$, $\left|x^{\prime}-x\right| \geq \delta_{\varepsilon}$. This implies that x is contained in an interval which is a subset of X_{c}^{ℓ}. Let a and b be the infimum and supremem of this interval respectively.

- If $b<x_{h *}$, then $\exists x^{\prime}<x_{h *}, x^{\prime} \in X_{i 1}^{\ell}$ where $\left|x^{\prime}-b\right|<\delta, \forall \delta>0$. Then, by the continuity of $F_{1}^{*}(x), \exists x^{\prime} \in X_{i 1}^{\ell}$ and $p_{1}\left(F_{1}^{*}\left(x^{\prime}\right)-F_{1}^{*}(b)\right)<c(b)-c\left(\frac{a+b}{2}\right)$. Then we know that

$$
\begin{aligned}
& p_{1} F_{1}^{*}\left(x^{\prime}\right)-p_{1} F_{1}^{*}\left(\frac{a+b}{2}\right)<c(b)-c\left(\frac{a+b}{2}\right) \text { and } \\
& \mathbb{E}\left[v_{i}^{\ell}\left(\mu\left(x^{\prime}\right), \mu_{-i}\right)\right] \leq \mathbb{E}\left[v_{i}^{\ell}\left(\mu\left(\frac{a+b}{2}\right), \mu_{-i}\right)\right]
\end{aligned}
$$

which contradicts $x^{\prime} \in B R_{i 1}^{\ell}\left(\sigma_{-i}\right)$.

- If $b=x_{h *}$, then $\exists x^{\prime} \in X_{i 1}^{h}$, where $\left|x^{\prime}-x_{h *}\right|<\delta, \forall \delta>0$. We can take $x^{\prime} \in X_{i 1}^{h}$ such that $p_{1}\left(F_{1}^{*}\left(x^{\prime}\right)-F_{1}^{*}\left(x_{h *}\right)\right)<c\left(\frac{b}{a^{h}}\right)-c\left(\frac{a+x_{h *}}{2 a^{h}}\right)$.
- If $x^{\prime} \notin X_{i 1}^{\ell}$ then $\mu\left(x^{\prime}\right)=1$, but since $\mathbb{E}\left[v_{i}^{h}\left(\mu\left(x^{\prime}\right), \mu_{-i}\right)\right] \leq \mathbb{E}\left[v_{i}^{h}\left(\mu\left(\frac{a+x_{h *}}{2}\right), \mu_{-i}\right)\right]$, then this contradicts $x^{\prime} \in B R_{i 1}^{h}\left(\sigma_{-i}\right)$.
- If $x^{\prime} \in X_{1}^{\ell}$, then $\mu\left(x^{\prime}\right) \in[0,1]$. If $\mu\left(x^{\prime}\right) \leq \mu\left(\frac{a+x_{h *}}{2}\right)$, then this contradicts $x^{\prime} \in B R_{i 1}^{\ell}\left(\sigma_{-i}\right)$, but if $\mu\left(x^{\prime}\right) \geq \mu\left(\frac{a+x_{h *}}{2}\right)$, this contradicts $x^{\prime} \in B R_{i 1}^{h}\left(\sigma_{-i}\right)$.
Therefore X_{c}^{ℓ} must be empty.
Similarly, define $X_{c}^{h}=\left\{x \mid x \in\left(x_{\ell}^{*}, x_{h}^{*}\right) \backslash B R_{i 1}^{h}\left(\sigma_{-i}\right)\right\}$ and let $x \in X_{c}^{h}$. Then $\exists \delta_{\varepsilon}>0$ such that for all $x^{\prime} \in X_{i 1}^{h},\left|x^{\prime}-x\right| \geq \delta_{\varepsilon}>0$. Take a and b to be the infimum and supremum respectively of the interval of X_{c}^{h} containing x noting that $b<x_{h}^{*}$.

There is an $x^{\prime} \in X_{i 1}^{h}$ where $\left|x^{\prime}-b\right|<\delta$ for all $\delta>0$. Then we can take $x^{\prime} \in B R_{i 1}^{h}\left(\sigma_{-i}\right)$ such that $p_{1}\left(F_{1}^{*}\left(x^{\prime}\right)-F_{1}^{*}(b)\right)<c\left(\frac{b}{a^{h}}\right)-c\left(\frac{b+a}{2 a^{h}}\right)$. This implies $p_{1}\left(F_{1}^{*}\left(x^{\prime}\right)-F_{1}^{*}\left(\frac{b+a}{2}\right)\right)<$ $c\left(\frac{x^{\prime}}{a^{h}}\right)-c\left(\frac{b+a}{2 a^{h}}\right)$ and

$$
\begin{aligned}
p_{1} F_{1}^{*}\left(\frac{b+a}{2}\right)-c\left(\frac{b+a}{2 a^{h}}\right) & +\mathbb{E}\left[v_{i}^{h}\left(\mu\left(\frac{b+a}{2}\right), \mu_{-i}\right)\right] \\
& >p_{1} F_{1}^{*}\left(x^{\prime}\right)-c\left(\frac{x^{\prime}}{a^{h}}\right)+\mathbb{E}\left[v_{i}^{h}\left(\mu\left(x^{\prime}\right), \mu_{-i}\right)\right]
\end{aligned}
$$

This contradicts $x^{\prime} \in B R_{i 1}^{h}\left(\sigma_{-i}\right)$, and therefore X_{c}^{h} must be empty.
(4) Lastly, we show that $x_{h *}<x_{\ell}^{*}$, and for all $x \in\left(x_{h *}, x_{\ell}^{*}\right), x \in B R_{i 1}^{\ell}\left(\sigma_{-i}\right) \cap B R_{i 1}^{h}\left(\sigma_{-i}\right)$. If $x_{\ell}^{*}=x_{h *}$, then $\forall \delta>0$, there is $x_{\ell} \in X_{i 1}^{\ell}$ and $x_{h} \in X_{i 1}^{h}$ where $\left|x_{h}-x_{\ell}\right|<\delta$. By the continuity of $F_{1}^{*}(x)$ and $c(x)$, there is x_{h} and x_{ℓ} for which

$$
p_{1} F_{1}^{*}\left(x_{h}\right)-c\left(\frac{x_{h}}{a^{h}}\right)-\left(p_{1} F_{1}^{*}\left(x_{\ell}\right)-c\left(\frac{x_{\ell}}{a^{h}}\right)\right)<\mathbb{E}\left[v_{i}^{h}\left(\mu\left(x_{\ell}\right), \mu_{-i}\right)\right]-\mathbb{E}\left[v_{i}^{h}\left(\mu\left(x_{h}\right), \mu_{-i}\right)\right]
$$

since $\mu\left(x_{\ell}\right)=0, \mu\left(x_{h}\right)=1$, and $\mathbb{E}\left[v_{i}^{h}\left(0, \mu_{-i}\right)\right]-\mathbb{E}\left[v_{i}^{h}\left(1, \mu_{-i}\right)\right]>0$. Then

$$
p_{1} F_{1}^{*}\left(x_{\ell}\right)-c\left(\frac{x_{\ell}}{a^{h}}\right)+\mathbb{E}\left[v_{i}^{h}\left(\mu\left(x_{\ell}\right), \mu_{-i}\right)\right]>p_{1} F_{1}^{*}\left(x_{h}\right)-c\left(\frac{x_{h}}{a^{h}}\right)+\mathbb{E}\left[v_{i}^{h}\left(\mu\left(x_{h}\right), \mu_{-i}\right)\right],
$$

which contradicts $x_{h} \in B R_{i 1}^{h}\left(\sigma_{-i}\right)$.
Define $X_{c}=\left\{x \mid x \in\left(x_{h *}, x_{\ell}^{*}\right) \backslash\left(B R_{i 1}^{\ell}\left(\sigma_{-i}\right) \cup B R_{i 1}^{h}\left(\sigma_{-i}\right)\right)\right\}$. From Lemma A.3, we know that for all $x^{\prime} \in\left\{\left(x_{h *}, x_{\ell}^{*}\right) \cap\left(X_{i 1}^{\ell} \cup X_{i 1}^{h}\right)\right\}, \mu\left(x^{\prime}\right) \in(0,1)$ as $\mu\left(x^{\prime}\right)=1$, implies $x_{\ell}^{*} \leq x^{\prime}$ and $\mu\left(x^{\prime}\right)=0$ implies $x_{h *} \geq x^{\prime}$. Therefore $x^{\prime} \in X_{i 1}^{\ell} \cap X_{i 1}^{h}$.

Let $x \in X_{c}$ be given. Then for all $x^{\prime}, x^{\prime \prime} \in\left\{\left(x_{h *}, x_{\ell}^{*}\right) \cap\left(X_{i 1}^{\ell} \cap X_{i 1}^{h}\right)\right\}$ such that $x^{\prime}<$ $x<x^{\prime \prime}$ we must by Lemma A. 3 have $\mu\left(x^{\prime}\right) \leq \mu\left(x^{\prime \prime}\right)$. Let $\mu^{*} \in\left[\sup \left\{\mu\left(x^{\prime}\right)\right\}, \inf \left\{\mu\left(x^{\prime \prime}\right)\right\}\right]$. These are well-defined as there is at least one such x^{\prime} and $x^{\prime \prime}$.

If $\mu(x) \geq \mu^{*}$ then $\mathbb{E}\left[v_{i}^{\ell}\left(\mu(x), \mu_{-i}\right)\right] \geq \mathbb{E}\left[v_{i}^{\ell}\left(\mu\left(x^{\prime}\right), \mu_{-i}\right)\right]$ for all x^{\prime} and

$$
\begin{aligned}
& p_{1} F_{1}^{*}\left(x^{\prime}\right)-c\left(x^{\prime}\right)+\mathbb{E}\left[v_{i}^{\ell}\left(\mu\left(x^{\prime}\right), \mu_{-i}\right)\right]-\varepsilon_{1}>p_{1} F_{1}^{*}(x)-c(x)+\mathbb{E}\left[v_{i}^{\ell}\left(\mu(x), \mu_{-i}\right)\right] \\
& \Rightarrow p_{1} F_{1}^{*}\left(x^{\prime}\right)-c\left(x^{\prime}\right)-\varepsilon_{1}>p_{1} F_{1}^{*}(x)-c(x)
\end{aligned}
$$

By continuity of $F_{1}^{*}(x)$ and $c(x), \exists \delta_{1}>0$ such that $\left[x-\delta_{1}, x\right] \subset X_{c}$.
Similarly, if $\mu(x)<\mu^{*}$, then $\mathbb{E}\left[v_{i}^{h}\left(\mu(x), \mu_{-i}\right)\right] \geq \mathbb{E}\left[v_{i}^{h}\left(\mu\left(x^{\prime \prime}\right), \mu_{-i}\right)\right]$ for all $x^{\prime \prime}$ and

$$
p_{1} F_{1}^{*}\left(x^{\prime \prime}\right)-c\left(\frac{x^{\prime \prime}}{a^{h}}\right)-\varepsilon_{2}>p_{1} F_{1}^{*}(x)-c\left(\frac{x}{a^{h}}\right) .
$$

By continuity, $\exists \delta_{2}>0$ such that $\left[x, x+\delta_{2}\right] \subset X_{c}$. In either case, if $x \in X_{c}$, then there is an interval with some supremum b and infimum a such that $x \in(a, b) \subset X_{c}$.

If $b<x_{\ell}^{*}$, then there is an $\tilde{x} \in\left\{\left(x_{h *}, x_{\ell}^{*}\right) \cap X_{i 1}^{\ell} \cap X_{i 1}^{h}\right\}$ where $|\tilde{x}-b|<\delta$ for all $\delta>0$, and therefore there is an \tilde{x} where $p_{1}\left(F_{1}^{*}(\tilde{x})-F_{1}^{*}(b)\right)<c\left(b / a^{h}\right)-c\left(\frac{b+a}{2 a^{h}}\right)$. It follows that $p_{1}\left(F_{1}^{*}(\tilde{x})-F_{1}^{*}\left(\frac{b+a}{2}\right)\right)<c\left(\tilde{x} / a^{h}\right)-c\left(\frac{b+a}{2 a^{h}}\right)$ and $p_{1}\left(F_{1}^{*}(\tilde{x})-F_{1}^{*}\left(\frac{b+a}{2}\right)\right)<c(\tilde{x})-c\left(\frac{b+a}{2}\right)$.

If $\mu((b+a) / 2)<\mu(\tilde{x})$ then

$$
\begin{aligned}
p_{1} F_{1}^{*}\left(\frac{b+a}{2}\right)-c\left(\frac{b+a}{2 a^{h}}\right) & +\mathbb{E}\left[v_{i}^{h}\left(\mu\left(\frac{b+a}{2}\right), \mu_{-i}\right)\right] \\
& >p_{1} F_{1}^{*}(\tilde{x})-c\left(\frac{\tilde{x}}{a^{h}}\right)+\mathbb{E}\left[v_{i}^{h}\left(\mu(\tilde{x}), \mu_{-i}\right)\right] .
\end{aligned}
$$

If $\mu((b+a) / 2) \geq \mu(\tilde{x})$ then
$p_{1} F_{1}^{*}\left(\frac{b+a}{2}\right)-c\left(\frac{b+a}{2}\right)+\mathbb{E}\left[v_{i}^{\ell}\left(\mu\left(\frac{b+a}{2}\right), \mu_{-i}\right)\right]>p_{1} F_{1}^{*}(\tilde{x})-c(\tilde{x})+\mathbb{E}\left[v_{i}^{\ell}\left(\mu(\tilde{x}), \mu_{-i}\right)\right]$.

In either case, this contradicts $\tilde{x} \in X_{i 1}^{\ell} \cap X_{i 1}^{h}$.
If $b=x_{\ell}^{*}$, then there is an $\tilde{x} \in X_{i 1}^{h}$, such that $|\tilde{x}-b|<\delta$, and $\mu(\tilde{x})=1$. This implies that $p_{1}\left(F_{1}^{*}(\tilde{x})-F_{1}^{*}\left(\frac{b+a}{2}\right)\right)<c\left(\tilde{x} / a^{h}\right)-c\left(\frac{b+a}{2 a^{h}}\right)$, and

$$
\begin{aligned}
p_{1} F_{1}^{*}\left(\frac{b+a}{2}\right)-c\left(\frac{b+a}{2 a^{h}}\right) & +\mathbb{E}\left[v_{i}^{h}\left(\mu\left(\frac{b+a}{2}\right), \mu_{-i}\right)\right] \\
& >p_{1} F_{1}^{*}(\tilde{x})-c\left(\frac{\tilde{x}}{a^{h}}\right)+\mathbb{E}\left[v_{i}^{h}\left(\mu(\tilde{x}), \mu_{-i}\right)\right] .
\end{aligned}
$$

This contradicts $\tilde{x} \in X_{i 1}^{h}$. Therefore X_{c} must be empty and for all $x \in\left(x_{h *}, x_{\ell}^{*}\right)$, we must have $x \in B R_{i 1}^{\ell}\left(\sigma_{-i}\right) \cap B R_{i 1}^{h}\left(\sigma_{-i}\right)$.

Lemma A.6. In any $S P B E$, the belief function is continuous in output on $\left[0, x_{h}^{*}\right]$, is weakly increasing on $\left(x_{h *}, x_{\ell}^{*}\right)$, takes a value of zero for all $x \in\left[0, x_{h *}\right]$ when $x_{h *}>0$, and takes a value of one for all $x \in\left[x_{\ell}^{*}, x_{h}^{*}\right]$ when $x_{h}^{*}>x_{\ell}^{*}$.

Proof. To show that $\mu^{*}(x)$ is continuous on $\left(0, x_{h}^{*}\right)$, note that equilibrium expected payoffs of a low ability contestant are constant for all $x \in B R_{i 1}^{\ell}\left(\sigma^{*}\right)$ and likewise for high ability contestants for all $x \in B R_{i 1}^{h}\left(\sigma^{*}\right)$. Since $F_{1}^{*}(x)$ and $c(x)$ are continuous on $(0, \infty)$ and $\mathbb{E}\left[v_{i}^{\ell}\left(\mu^{*}(x), \mu_{-i}\right)\right]=c(x)-p_{1} F_{1}^{*}(x)+K^{\ell}\left(p_{1}, p_{2}\right)$ on $\left[0, x_{\ell}^{*}\right]$, then $\mathbb{E}\left[v_{i}^{\ell}\left(\mu^{*}(x), \mu_{-i}\right)\right]$ must be continuous on this interval. Similarly, $\mathbb{E}\left[v_{i}^{h}\left(\mu^{*}(x), \mu_{-i}\right)\right]$ is continuous on $\left[x_{h *}, x_{h}^{*}\right]$. Since $\mathbb{E}\left[v_{i}^{h}\left(\mu^{*}(x), \mu_{-i}\right)\right]$ is strictly decreasing in $\mu^{*}(x)$, and $\mathbb{E}\left[v_{i}^{\ell}\left(\mu^{*}(x), \mu_{-i}\right)\right]$ is strictly increasing in $\mu^{*}(x)$, then $\mu^{*}(x)$ must also be continuous on $B R_{i 1}^{\ell}\left(\sigma^{*}\right) \cup B R_{i 1}^{h}\left(\sigma^{*}\right)=\left[0, x_{h}^{*}\right]$.

To show the remaining properties of the equilibrium belief function, we first show that the set $\left[0, x_{h}^{*}\right] \backslash X_{i 1}$ has no interior, i.e. there can be no interval $[a, b] \subset\left[0, x_{h}^{*}\right]$ where for all $x \in[a, b], x \notin X_{i 1}$. This implies that $X_{i 1}$ is dense in $\left[0, x_{h}^{*}\right]$.

If we let $[\tilde{a}, \tilde{b}] \subset\left[0, x_{h}^{*}\right] \backslash X_{i 1}$ be given, then define a and b to be the infimum and supremum respectively of the interval in $\left[0, x_{h}^{*}\right] \backslash X_{i 1}$ which contains $[\tilde{a}, \tilde{b}]$. Neither $x_{h *}$ nor x_{ℓ}^{*} can be contained in the interval as they are the limit point of a subset of $X_{i 1}$. Then the interval $[a, b]$ must be contained within either $\left[0, x_{h *}\right],\left[x_{h *}, x_{\ell}^{*}\right]$, or $\left[x_{\ell}^{*}, x_{h}^{*}\right]$.

1. If $[a, b] \subset\left[0, x_{h *}\right]$, then for all $x \in[a, b], x \in B R_{i 1}^{\ell}\left(\sigma^{*}\right)$ and $F_{1}^{*}(x)=F_{1}^{*}(a)$. Therefore, $\mathbb{E}\left[v_{i}^{\ell}\left(\mu^{*}(b), \mu_{-i}\right)\right]-c(b)=\mathbb{E}\left[v_{i}^{\ell}\left(\mu^{*}(a), \mu_{-i}\right)\right]-c(a)$, which implies that $\mu(b)>\mu(a)$. Since $\mu(x)$ is continuous, then for all $\delta>0$, there is an $x \in X_{i 1}^{h}$ such that $|x-b|<\delta$ and $\mu(x)>0$. If $x \in X_{i 1}^{h} \backslash X_{i 1}^{\ell}$, then $\mu^{*}(x)=1$, and $x \notin B R_{i 1}^{h}\left(\sigma^{*}\right)$, a contradiction. If $x \in X_{i 1}^{h} \cap X_{i 1}^{\ell}$ then depending on the value of $\mu^{*}((a+b) / 2)$, it must be that either $x \notin B R_{i 1}^{h}\left(\sigma^{*}\right)$ or $x \notin B R_{i 1}^{\ell}\left(\sigma^{*}\right)$, again a contradiction.
2. If $[a, b] \subset\left[x_{h *}, x_{\ell}^{*}\right]$, then for all $x \in[a, b], x \in\left\{B R_{i 1}^{\ell}\left(\sigma^{*}\right) \cap B R_{i 1}^{h}\left(\sigma^{*}\right)\right\}$ which implies

$$
\begin{aligned}
\mathbb{E}\left[v_{i}^{\ell}\left(\mu^{*}(b), \mu_{-i}\right)\right]-c(b) & =\mathbb{E}\left[v_{i}^{\ell}\left(\mu^{*}(a), \mu_{-i}\right)\right]-c(a), \\
\mathbb{E}\left[v_{i}^{h}\left(\mu^{*}(b), \mu_{-i}\right)\right]-c\left(b / a^{h}\right) & =\mathbb{E}\left[v_{i}^{h}\left(\mu^{*}(a), \mu_{-i}\right)\right]-c\left(a / a^{h}\right) .
\end{aligned}
$$

However, rearranging these equations, it is clear they cannot hold at the same time
as the right hand sides are both strictly positive which contradicts Proposition A.1.

$$
\begin{aligned}
\mathbb{E}\left[v_{i}^{\ell}\left(\mu^{*}(b), \mu_{-i}\right)\right]-\mathbb{E}\left[v_{i}^{\ell}\left(\mu^{*}(a), \mu_{-i}\right)\right] & =c(b)-c(a) \\
\mathbb{E}\left[v_{i}^{h}\left(\mu^{*}(b), \mu_{-i}\right)\right]-\mathbb{E}\left[v_{i}^{h}\left(\mu^{*}(a), \mu_{-i}\right)\right] & =c\left(b / a^{h}\right)-c\left(a / a^{h}\right)
\end{aligned}
$$

3. If $[a, b] \subset\left[x_{\ell}^{*}, x_{h}^{*}\right]$, then for all $x \in[a, b], x \in B R_{i 1}^{h}\left(\sigma^{*}\right)$ and therefore,

$$
\mathbb{E}\left[v_{i}^{h}\left(\mu^{*}(b), \mu_{-i}\right)\right]-c\left(b / a^{h}\right)=\mathbb{E}\left[v_{i}^{h}\left(\mu^{*}(a), \mu_{-i}\right)\right]-c\left(a / a^{h}\right),
$$

and $\mu^{*}(b)<\mu^{*}(a) \leq 1$. Then for all $\delta>0$, there is an $x \in X_{i 1}^{h}$ such that $|x-b|<\delta$ and $\mu^{*}(x)=1$. However, this contradicts the continuity of $\mu^{*}(x)$.
Now, if $x \in\left[0, x_{h *}\right)$ and $\mu^{*}(x)=\varepsilon>0$, then by the continuity of $\mu^{*}(x), \exists \delta>0$ where $\forall x^{\prime},\left|x^{\prime}-x\right|<\delta, \mu^{*}(x)>\varepsilon / 2$. However for all $\delta>0$ there is an $x^{\prime} \in X_{i 1}^{\ell} \backslash X_{i 1}^{h}$ for which $\mu^{*}\left(x^{\prime}\right)=0$, a contradiction. Therefore $\mu^{*}(x)=0$ for all $x \in\left[0, x_{h *}\right)$. Note that $\mu^{*}\left(x_{h *}\right)=0$ when $x_{h *}>0$, which follows from continuity from the left. Similarly, $\mu^{*}(x)=1$ for all $x \in\left[x_{\ell}^{*}, x_{h}^{*}\right]$ when $x_{\ell}^{*}<x_{h}^{*}$. To show that $\mu^{*}(x)$ is weakly increasing on $\left[x_{h *}, x_{\ell}^{*}\right]$, let $x, y \in\left[x_{h *}, x_{\ell}^{*}\right]$ be such that, $\mu^{*}(x)>\mu^{*}(y)$ and $x<y$. Then there is an x^{\prime} and y^{\prime} arbitrarily close to x and y respectively, where $x^{\prime}, y^{\prime} \in X_{i 1}$ and therefore $\mu^{*}\left(x^{\prime}\right) \leq$ $\mu^{*}\left(y^{\prime}\right)$. This is not consistent with $\mu^{*}(x)$ being continuous on $\left[0, x_{h}^{*}\right]$, a contradiction.

Proof of Theorem 2

There are up to three distinct intervals in each equilibrium. We will show that the endpoints of these intervals and the distribution functions on the intervals are completely determined by the first order conditions of the contestants.

Conditions for x being in $B R_{i 1}^{h}\left(\sigma^{*}\right)$ and $B R_{i 1}^{\ell}\left(\sigma^{*}\right)$ are

$$
\begin{aligned}
& B R_{i 1}^{h}\left(\sigma^{*}\right): p_{1} F_{1}^{*}(x)+\mathbb{E}\left[v_{i}^{h}\left(\mu^{*}(x), \mu_{-i}\right)\right]-c\left(\frac{x}{a^{h}}\right)=K^{h}\left(p_{1}, p_{2}\right), \\
& B R_{i 1}^{\ell}\left(\sigma^{*}\right): p_{1} F_{1}^{*}(x)+\mathbb{E}\left[v_{i}^{\ell}\left(\mu^{*}(x), \mu_{-i}\right)\right]-c(x)=K^{\ell}\left(p_{1}, p_{2}\right)=0 .
\end{aligned}
$$

For all values of $p_{1}>0$ and $p_{2}>0$, Lemma A. 5 shows that $x_{h *}<x_{\ell}^{*}$, and therefore the interval $\left[x_{h *}, x_{\ell}^{*}\right]$ is non-trivial. On this interval, $x \in X_{i 1}^{\ell} \cup X_{i 1}^{h}$ implies $x \in X_{i 1}^{\ell} \cap X_{i 1}^{h} \subset$ $B R_{i 1}^{\ell}\left(\sigma^{*}\right) \cap B R_{i 1}^{h}\left(\sigma^{*}\right)$. Subtracting the condition for $B R_{i 1}^{\ell}\left(\sigma^{*}\right)$ from the condition for $B R_{i 1}^{h}\left(\sigma^{*}\right)$

$$
\mathbb{E}\left[v_{i}^{h}\left(\mu^{*}(x), \mu_{-i}\right)\right]-\mathbb{E}\left[v_{i}^{\ell}\left(\mu^{*}(x), \mu_{-i}\right)\right]=c\left(\frac{x}{a^{h}}\right)-c(x)+K^{h}\left(p_{1}, p_{2}\right) .
$$

Taking the derivative of each side with respect to output gives (16):

$$
\frac{d \mu^{*}(x)}{d x} d\left(\mu^{*}(x)\right)=c^{\prime}(x)-\frac{1}{a^{h}} c^{\prime}\left(\frac{x}{a^{h}}\right) .
$$

Note that on this interval, $\frac{d \mu^{*}(x)}{d x}>0$ and therefore, $F_{\mu}^{*}\left(\mu^{*}(x)\right)=F_{1}^{*}(x)$.
Taking the derivative of the condition for X_{1}^{ℓ} and combining (16) we recover (17):

$$
\begin{aligned}
& p_{1} f_{1}^{*}(x)+\frac{d \mu^{*}(x)}{d x} d\left(\mu^{*}(x)\right) F_{1}^{*}(x)=c^{\prime}(x) \\
\Rightarrow & p_{1} f_{1}^{*}(x)=c^{\prime}(x)\left(1-F_{1}^{*}(x)\right)+\frac{1}{a^{h}} c^{\prime}\left(\frac{x}{a^{h}}\right) F_{1}^{*}(x) .
\end{aligned}
$$

From continuity of $F_{1}^{*}(x), p_{1} F_{1}^{*}\left(x_{h *}\right)=c\left(x_{h *}\right)$. For a given $x_{h *}$, using the Picard Lindelöf Theorem ${ }^{2}$, we know that there is a unique solution for $f_{1}^{*}(x)$ on $\left[x_{h *}, x_{\ell}^{*}\right]$, and therefore $F_{1}^{*}(x)$ is determined on this interval.

To see why only one such $x_{h *}$ can lead to an equilibrium, consider a different initial condition, $p_{1} \tilde{F}_{\tilde{*}}\left(\tilde{x}_{h *}\right)=c\left(\tilde{x}_{h *}\right)$ where $\tilde{x}_{h *}>x_{h *}$ and the associated $\tilde{f}_{1}^{*}(x)$ on $\left[\tilde{x}_{h *}, \tilde{x}_{\ell}^{*}\right]$. Then both $\tilde{F}_{1}^{*}\left(\tilde{x}_{h *}\right)>F_{1}^{*}\left(\tilde{x}_{h *}\right)$ and $\tilde{\mu}^{*}\left(\tilde{x}_{h *}\right)<\mu^{*}\left(\tilde{x}_{h *}\right)$, and for all $x \in\left[\tilde{x}_{h *}, x_{\ell}^{*}\right]$, $\tilde{F}_{1}^{*}(x)>F_{1}^{*}(x), \tilde{f}_{1}^{*}(x)<f_{1}^{*}(x)$, and $\mu^{*}(x)>\tilde{\mu}^{*}(x)$. This implies that $\tilde{H}_{1}^{*}\left(x_{\ell}^{*}\right)=$ $\int_{0}^{x_{\ell}^{*}} \tilde{\mu}^{*}(x) \tilde{f}_{1}^{*}(x) d x<\int_{0}^{x_{\ell}^{*}} \mu^{*}(x) f_{1}^{*}(x) d x=H_{1}^{*}\left(x_{\ell}^{*}\right)$ and therefore $\tilde{L}_{1}^{*}\left(x_{\ell}^{*}\right)>L_{1}^{*}\left(x_{\ell}^{*}\right)=1$, a contradiction. Similarly, there cannot be an additional equilibrium where $\tilde{x}_{h *}<x_{h *}$.

The belief function on this interval is determined up to a constant by equation (16). The constant is determined by $\mu^{*}\left(x_{h, *}\right)$ which is 0 when $x_{h *}>0$, and needs to be characterized in equilibrium when $x_{h *}=0$. Given this constant, the equilibrium strategies of high ability and low ability contestants can be constructed on this interval.

For small values of p_{1} relative to p_{2}, this is the only non-trivial interval: $x_{h *}=0$ and $x_{\ell}^{*}=x_{h}^{*}$. In this case, $\mu^{*}\left(x_{h *}\right) \in[0, \hat{\mu}]$ and $\mu^{*}\left(x_{h}^{*}\right) \in[\hat{\mu}, 1]$ both need to be determined in equilibrium along with x_{h}^{*}. By an argument similar to that for showing $x_{h *}$ is unique, if $x_{h *}=0$ then $\mu^{*}\left(x_{h *}\right)$ is also uniquely determined. Then $\mu^{*}(x)$ and $F_{1}^{*}(x)$ are uniquely determined on this interval, and therefore x_{h}^{*} and $\mu^{*}\left(x_{h}^{*}\right)$ are also uniquely determined.

For larger $p_{1}, x_{h *}>0$ and/or $x_{h}^{*}>x_{\ell}^{*}$. When the intervals are non-trivial, then the belief functions on these intervals were characterized in Lemma A.6. Characterization of the output distributions directly follow. For $x \in\left[0, x_{h *}\right), \mathbb{E}\left[v_{i}^{\ell}\left(\mu^{*}(x), \mu_{-i}\right)\right]=0$ as $\mu^{*}(x)=0$, and therefore $p_{1} F_{1}^{*}(x)=c(x)$. For all $x \in\left[x_{\ell}^{*}, x_{h}^{*}\right], \mathbb{E}\left[v_{i}^{h}\left(\mu^{*}(x), \mu_{-i}\right)\right]=$ $\mathbb{E}\left[v_{i}^{h}\left(1, \mu_{-i}\right)\right]$ and $p_{1} F_{1}^{*}(x)+\mathbb{E}\left[v_{i}^{h}\left(1, \mu_{-i}\right)\right]=c\left(x / a^{h}\right)+K^{h}\left(p_{1}, p_{2}\right)$.

Given $F_{1}^{*}(x)$ and $\mu^{*}(x)$ on $\left[0, x^{*}\right]$, the output distribution of both the low and high ability contestants can be determined. Therefore $F_{1}^{*}(x), L_{1}^{*}(x)$ and $H_{1}^{*}(x)$ are uniquely characterized on $X_{i 1}$ where $\bar{X}_{i 1}=\left[0, x_{h}^{*}\right]$. These distributions along with the second period output distributions $L_{i 2}^{*}\left(x \mid \eta_{2}\right)$ and $H_{i 2}^{*}\left(x \mid \eta_{2}\right)$ form the unique SPBE.
Proposition A.3. Let $F_{\mu}^{*}(M)$ be the equilibrium belief distribution associated with prize ratio p_{1} / p_{2} and $\tilde{F}_{\mu}^{*}(M)$ be associated with $\tilde{p}_{1} / \tilde{p}_{2}$. Then $p_{1} / p_{2}>\tilde{p}_{1} / \tilde{p}_{2}$ implies $F_{\mu}^{*}(M)<\operatorname{SOSD} \tilde{F}_{\mu}^{*}(M)$.
Proof. Belief distributions that arise after the first contest for different prize structures must be equal at least at one point. If the distributions do not cross then one distribution FOSD the other and the distributions cannot have the same expected value. However, the expectation of the probability that a contestant is high ability is $\hat{\mu}$ in either case.

Let $\tilde{\mu}(\hat{\tilde{x}})=\mu(\hat{x})=\hat{M}$ be a point of intersection for belief distributions $\tilde{F}_{\mu}(M)$ and $F_{\mu}(M)$. Note that

$$
f_{\mu}(\hat{M})=\frac{\partial}{\partial \mu} F_{1}\left(\mu^{-1}(\hat{M})\right)=\frac{f_{1}\left(\mu^{-1}(\hat{M})\right)}{\mu^{\prime}\left(\mu^{-1}(\hat{M})\right)}=\frac{f_{1}(\hat{x})}{\mu^{\prime}(\hat{x})} .
$$

[^1]From equations (16) and (17),

$$
\begin{aligned}
\frac{f_{1}(\hat{x})}{\mu^{\prime}(\hat{x})} & =\frac{d(\mu(\hat{x}))\left(c^{\prime}(x)-F_{1}(\hat{x})\left(c^{\prime}(x)-\frac{1}{a_{h}} c^{\prime}\left(\frac{\hat{x}}{a_{h}}\right)\right)\right)}{p_{1}\left(c^{\prime}(x)-\frac{1}{a_{h}} c^{\prime}\left(\frac{\hat{x}}{a_{h}}\right)\right)}=\frac{d(\mu(\hat{x}))}{p_{1}}\left(\frac{a_{h}^{\alpha}}{a_{h}^{\alpha}-1}-F_{1}(\hat{x})\right) \\
& =\frac{p_{2}}{p_{1}}\left(\frac{a_{h}^{\alpha}\left(1-F_{1}(\hat{x})\right)+F_{1}(\hat{x})}{a_{h}^{\alpha}}\right)
\end{aligned}
$$

Because $\tilde{F}_{1}\left(\tilde{\mu}^{-1}(\hat{M})\right)=F_{1}\left(\mu^{-1}(\hat{M})\right)$, then $\tilde{f}_{\mu}(\hat{M}) \lessgtr f_{\mu}(\hat{M})$ when $\frac{\tilde{p}_{2}}{\tilde{p}_{1}} \lessgtr \frac{p_{2}}{p_{1}}$. Given that $\tilde{f}_{\mu}(\hat{M})<f_{\mu}(\hat{M})$, as in the case when first contest prize is increased for a fixed second contest prize, this implies that $\tilde{F}_{\mu}(M)$ crosses $F_{\mu}(M)$ exactly once from above and $\tilde{F}_{\mu}(M)<_{S O S D} F_{\mu}(M)$. An increase the second contest prize for fixed first contest prize implies $\tilde{F}_{\mu}(M)$ crosses $F_{\mu}(M)$ exactly once from below and $\tilde{F}_{\mu}(M)>_{S O S D} F_{\mu}(M)$.

Equilibrium construction

Assume the cost function takes the form, $c(x)=k x^{\alpha}$, with $\alpha \geq 1$ and $k>0$ and let $\hat{\mu}=1 / 2$. For the equilibrium of the first contest we find the ex-ante expected distribution of each contestant over each of the potential three ranges of output which depend on the values of p_{1} and p_{2}. Let $A=\frac{a^{h^{\alpha}}}{a^{h^{\alpha}}-1}$.

For any values of p_{1} and $p_{2}, x_{h *}<x_{\ell}^{*}$. For $x \in\left[x_{h *}, x_{\ell}^{*}\right]$ the expected output distribution satisfies equation (17). The family of solutions is

$$
F_{1}^{*}(x)=B e^{\left(c\left(x / a^{h}\right)-c(x)\right) / p_{1}}+A
$$

with boundary condition $F_{1}^{*}\left(x_{h *}\right)=\frac{1}{p_{1}} k x_{h *}^{\alpha}$. The solution is

$$
F_{1}^{*}(x)=A-\left(A-\frac{1}{p_{1}} k x_{h *}^{\alpha}\right) e^{-\frac{1}{A p_{1}}\left(k x^{\alpha}-k x_{h *}^{\alpha}\right)} .
$$

The belief function satisfies the condition in equation (16) which simplifies under this parameterization to $p_{2} \mu^{\prime}(x)=c^{\prime}(x)$. The belief function is $\mu^{*}(x)=\frac{1}{p_{2}}\left(k x^{\alpha}+C\right)$, where $C=-c\left(x_{h *}\right)$ if $x_{h *}>0$ and $C=p_{2} \mu^{*}\left(x_{h *}\right)$ if $x_{h *}=0$. Therefore

$$
F_{1}^{*}(x)=A-\left(A-\frac{1}{p_{1}} k x_{h *}^{\alpha}\right) e^{-\frac{p_{2}}{A p_{1}}\left(\mu^{*}(x)-\mu^{*}\left(x_{h *}\right)\right)}
$$

where $\mu^{*}\left(x_{h *}\right)=0$ when $x_{h *}>0$.
If $x_{h *}>0$, then $F_{1}^{*}(x)=\frac{1}{p_{1}} k x^{\alpha}$ and $\mu^{*}(x)=0$ for $x \in\left[0, x_{h *}\right]$. If $x_{\ell}^{*}<x_{h}^{*}$, then $F_{1}^{*}(x)=\frac{1}{p_{1}}\left(\frac{1}{a^{h^{\alpha}}} k x^{\alpha}+K^{h}\left(p_{1}, p_{2}\right)-\mathbb{E}\left[v_{i}^{h}\left(1, \mu_{-i}\right)\right]\right)$ and $\mu^{*}(x)=1$ for $x \in\left[x_{\ell}^{*}, x_{h}^{*}\right]$.

Given $F_{1}^{*}(x)$ and $\mu^{*}(x)$, the output distribution of the both the high and low ability contestants comes from using $2 F_{1}^{*}(x)=L_{1}^{*}(x)+H_{1}^{*}(x)$ and $\mu^{*}(x)=\frac{h_{1}^{*}(x)}{\ell_{1}^{*}(x)+h_{1}^{*}(x)}$.

Over the range $x \in\left[x_{h, *}, x_{\ell}^{*}\right]$ these distributions are

$$
\begin{aligned}
H_{1}^{*}(x) & =2\left(A-\frac{1}{p_{1}} k x_{h, *}^{\alpha}\right)\left(\frac{A p_{1}}{p_{2}}-\left(\mu^{*}(x)+\frac{A p_{1}}{p_{2}}\right) e^{-\frac{p_{2}}{A p_{1}}\left(\mu^{*}(x)-\mu^{*}\left(x_{h, *}\right)\right)}\right)+2 A \mu^{*}\left(x_{h, *}\right) \text { and } \\
L_{1}^{*}(x) & =2 A\left(1-\mu^{*}\left(x_{h, *}\right)\right)+2\left(A-\frac{1}{p_{1}} k x_{h, *}^{\alpha}\right)\left(\left(\mu^{*}(x)+\frac{A p_{1}}{p_{2}}-1\right) e^{-\frac{p_{2}}{A p_{1}}\left(\mu^{*}(x)-\mu^{*}\left(x_{h, *}\right)\right)}-\frac{A p_{1}}{p_{2}}\right)
\end{aligned}
$$

Small prize in first contest

Given p_{2}, for p_{1} close enough to 0 (specifically for $\left.p_{1}<\frac{p_{2}}{2}\left(\left(A^{2}-A\right) \log \left(a^{h^{\alpha}}\right)-A\right)^{-1}\right)$, both $x_{h *}=0$ and $x_{\ell}^{*}=x_{h}^{*}$. The expected output distribution becomes

$$
F_{1}^{*}(x)=A\left(1-e^{-\frac{p_{2}}{A p_{1}}\left(\mu^{*}(x)-\mu^{*}\left(x_{h *}\right)\right)}\right), \text { for } 0 \leq x \leq x_{h}^{*}
$$

Given $H_{1}^{*}\left(x_{h *}\right)=F_{1}^{*}\left(x_{h *}\right)=F_{1}^{*}(0)=0$, the output distribution of the high ability contestant is

$$
H_{1}^{*}(x)=\int_{0}^{x} \mu^{*}(t) f_{1}^{*}(t) d t=2 F_{1}^{*}(x)\left(\mu^{*}(x)+\frac{A p_{1}}{p_{2}}\right)-2 A\left(\mu^{*}(x)-\mu^{*}\left(x_{h *}\right)\right) .
$$

Combining $F_{1}^{*}\left(x_{h}^{*}\right)=1$ and $H_{1}\left(x_{h}^{*}\right)=1$ gives

$$
\mu^{*}\left(x_{h}^{*}\right)-\mu^{*}\left(x_{h *}\right)=\frac{p_{1}}{p_{2}}+\frac{2 \mu^{*}\left(x_{h}^{*}\right)-1}{2 A}
$$

Plugging back into $F_{1}^{*}\left(x_{h}^{*}\right)=1$, we can solve the belief function at each end point:

$$
\mu^{*}\left(x_{h}^{*}\right)=\frac{1}{2}+\frac{p_{1}}{p_{2}}\left(A^{2} \log \left(a^{h^{\alpha}}\right)-A\right) \text { and } \mu^{*}\left(x_{h *}\right)=\frac{1}{2}+\frac{p_{1}}{p_{2}}\left(\left(A^{2}-A\right) \log \left(a^{h^{\alpha}}\right)-A\right) .
$$

Therefore $\mu^{*}\left(x_{h}^{*}\right)-\mu^{*}\left(x_{h *}\right)=\frac{p_{1}}{p_{2}} A \log \left(a^{h^{\alpha}}\right)$ and $k x_{h}^{* \alpha}=p_{1} A \log \left(a^{h^{\alpha}}\right)$.
Example of parameters that fall in this category: $c(e)=e^{2}, a^{h}=2$ and $p_{1}=.5$ and $p_{2}=1$.

Intermediate prize in first contest

For larger p_{1} compared to p_{2}, (specifically $\left.p_{1}>\frac{p_{2}}{2}\left(\left(A^{2}-A\right) \log \left(a^{h^{\alpha}}\right)-A\right)^{-1}\right)$, then $H_{1}^{*}\left(x_{\ell}^{*}\right)<1$ and $x_{\ell}^{*}<x_{h}^{*}$. The expected output distribution is

$$
F_{1}^{*}(x)=\left\{\begin{array}{cc}
A\left(1-e^{\frac{-p_{2}}{A p_{1}}}\left(\mu^{*}(x)-\mu^{*}\left(x_{h *}\right)\right)\right. \\
\frac{1}{p_{1}}\left(\frac{k}{a^{\alpha}} x^{\alpha}+K^{h}\left(p_{1}, p_{2}\right)-\mathbb{E}\left[v_{i}^{h}\left(1, \mu_{-i}\right)\right]\right) & 0 \leq x \leq x_{\ell}^{*} \\
x_{\ell}^{*} \leq x \leq x_{h}^{*}
\end{array} .\right.
$$

The output distributions of the high and low ability contestants are

$$
\begin{aligned}
H_{1}^{*}(x) & =2 F_{1}^{*}(x)\left(\mu^{*}(x)+\frac{A p_{1}}{p_{2}}\right)-2 A\left(\mu^{*}(x)-\mu^{*}\left(x_{h *}\right)\right) \text { and } \\
L_{1}^{*}(x) & =2 F_{1}^{*}(x)\left(1-\mu^{*}(x)-\frac{A p_{1}}{p_{2}}\right)+2 A\left(\mu^{*}(x)-\mu^{*}\left(x_{h *}\right)\right) .
\end{aligned}
$$

To characterize the equilibrium we need to solve for $\mu^{*}(0), x_{\ell}^{*}, x_{h}^{*}$, and $K^{h}\left(p_{1}, p_{2}\right)-$ $\mathbb{E}\left[v_{i}^{h}\left(1, \mu_{-i}\right)\right]$.

1. Continuity of the belief function: $\mu^{*}\left(x_{\ell}^{*}\right)=1$ implies that $k x_{\ell}^{* \alpha}=p_{2}\left(1-\mu^{*}\left(x_{h *}\right)\right)$:
2. $L_{1}^{*}\left(x_{\ell}^{*}\right)=1$ gives an implicit equation for $\mu^{*}\left(x_{h *}\right)$.

$$
1=2 A\left(\left(1-\mu^{*}\left(x_{h *}\right)\right)-\frac{A p_{1}}{p_{2}}\left(1-e^{-\frac{p_{2}}{A p_{1}}\left(1-\mu^{*}\left(x_{h *}\right)\right)}\right)\right)
$$

3. By continuity of $F_{1}^{*}(x)$ at x_{ℓ}^{*}, we can find $K^{h}\left(p_{1}, p_{2}\right)-\mathbb{E}\left[v_{i}^{h}\left(1, \mu_{-i}\right)\right]$:

$$
A-A e^{-\frac{p_{2}}{A p_{1}}\left(1-\mu^{*}\left(x_{h *}\right)\right)}=\frac{1}{p_{1}}\left(\frac{k}{a^{h^{\alpha}}} x_{\ell}^{* \alpha}+K^{h}\left(p_{1}, p_{2}\right)-\mathbb{E}\left[v_{i}^{h}\left(1, \mu_{-i}\right)\right]\right) .
$$

Using the equation that determines $\mu^{*}\left(x_{h *}\right)$ and the belief equations, this simplifies to

$$
K^{h}\left(p_{1}, p_{2}\right)-\mathbb{E}\left[v_{i}^{h}\left(1, \mu_{-i}\right)\right]=\frac{p_{2}}{A}\left(\frac{1}{2}-\mu\left(x_{h *}\right)\right) .
$$

4. From $F_{1}^{*}\left(x_{h}^{*}\right)=1$ we can find x_{h}^{*} :

$$
k x_{h}^{* \alpha}=p_{1} a^{h^{\alpha}}-p_{2}\left(a^{h^{\alpha}}-1\right)\left(1 / 2-\mu^{*}\left(x_{h *}\right)\right)
$$

Example of parameters that fall in this category: $c(e)=e^{2}, a^{h}=2$ and $p_{1}=0.8$ and $p_{2}=1$ 。

Large prize in first contest

For large enough p_{1}, all three intervals are non-trivial, $\mu^{*}\left(x_{h *}\right)=0$ and $\mu^{*}\left(x_{\ell}^{*}\right)=1$. The distribution functions are

$$
\begin{gathered}
F_{1}^{*}(x)=\left\{\begin{array}{cc}
\frac{1}{p_{1}} k x^{\alpha} & 0 \leq x \leq x_{h *} \\
A-\left(A-\frac{1}{p_{1}} k x_{h *}^{\alpha}\right) e^{\frac{-p_{2}}{A p_{1}} \mu^{*}(x)} & x_{h *} \leq x \leq x_{\ell}^{*}, \\
\frac{1}{p_{1}}\left(\frac{k}{a^{\alpha}} x^{\alpha}+K^{h}\left(p_{1}, p_{2}\right)-\mathbb{E}\left[v_{i}^{h}\left(1, \mu_{-i}\right)\right]\right) & x_{\ell}^{*} \leq x \leq x_{h}^{*}
\end{array}\right. \\
L_{1}^{*}(x)=\left\{\begin{array}{cc}
\frac{2}{p_{1}} k x^{\alpha}, & 0 \leq x \leq x_{h *} \\
2 A+2\left(A-\frac{1}{p_{1}} k x_{h *}^{\alpha}\right)\left(\left(\mu^{*}(x)+\frac{A p_{1}}{p_{2}}-1\right) e^{-\frac{p_{2}}{A p_{1}} \mu^{*}(x)}-\frac{A p_{1}}{p_{2}}\right), & x_{h *} \leq x \leq x_{\ell}^{*}, \\
1, & x_{\ell}^{*} \leq x \leq x_{h}^{*}
\end{array}\right. \\
H_{1}^{*}(x)=\left\{\begin{array}{cc}
0, & 0 \leq x \leq x_{h *} \\
2\left(A-\frac{1}{p_{1}} k x_{h *}^{\alpha}\right)\left(\frac{A p_{1}}{p_{2}}-\left(\mu^{*}(x)+\frac{A p_{1}}{p_{2}}\right) e^{-\frac{p_{2}}{A p_{1}} \mu^{*}(x)}\right), & x_{h *} \leq x \leq x_{\ell}^{*} \\
\frac{2}{p_{1}}\left(\frac{k}{a_{h}^{\alpha}} x^{\alpha}+K^{h}\left(p_{1}, p_{2}\right)-\mathbb{E}\left[v_{i}^{h}\left(1, \mu_{-i}\right)\right]\right)-1 & x_{\ell}^{*} \leq x \leq x_{h}^{*}
\end{array}\right.
\end{gathered}
$$

Using $\mu^{*}\left(x_{\ell}^{*}\right)=1$ and $L_{1}^{*}\left(x_{\ell}^{*}\right)=1$ identifies the endpoints of the middle interval:

$$
k x_{h *}^{\alpha}=p_{1}\left(A-\frac{(2 A-1) p_{2}}{2 A p_{1}\left(1-e^{-\frac{p_{2}}{A p_{1}}}\right)}\right) \text { and } k x_{\ell}^{* \alpha}=p_{2}+p_{1}\left(A-\frac{(2 A-1) p_{2}}{2 A p_{1}\left(1-e^{-\frac{p_{2}}{A p_{1}}}\right)}\right) .
$$

Continuity of the expected output distribution at x_{ℓ}^{*} gives

$$
\frac{1}{p_{1}}\left(\frac{1}{a^{h^{\alpha}}} k\left(x_{\ell}^{*}\right)^{\alpha}+K^{h}\left(p_{1}, p_{2}\right)-\mathbb{E}\left[v_{i}^{h}\left(1, \mu_{-i}\right)\right]\right)=A-\left(A-\frac{1}{p_{1}} k x_{h *}^{\alpha}\right) e^{-\frac{p_{2}}{A p_{1}}} .
$$

Then the constant associated with the third interval is

$$
K^{h}\left(p_{1}, p_{2}\right)-\mathbb{E}\left[v_{i}^{h}\left(1, \mu_{-i}\right)\right]=p_{1}-\frac{p_{2}}{a_{h}^{\alpha}}\left(1+\frac{2 A-1}{2 A} \frac{a^{h^{\alpha}} e^{-\frac{p_{2}}{A p_{1}}}-1}{1-e^{-\frac{p_{2}}{A p_{1}}}}\right) .
$$

Using $F_{1}^{*}\left(x_{h}^{*}\right)=1$ the endpoint of the upper interval is characterized by

$$
k x_{h}^{* \alpha}=a^{h^{\alpha}}\left(p_{1}-\left(K^{h}\left(p_{1}, p_{2}\right)-\mathbb{E}\left[v_{i}^{h}\left(1, \mu_{-i}\right)\right]\right)\right)=p_{2}\left(1+\left(\frac{2 A-1}{2 A}\right) \frac{a^{h^{\alpha}} e^{-\frac{p_{2}}{A p_{1}}}-1}{1-e^{-\frac{p_{2}}{A p_{1}}}}\right) .
$$

Example of parameters that fall in this category: $c(e)=e^{2}, a^{h}=2$ and $p_{1}=1$ and $p_{2}=1$.

Second Stage Contest

As derived in the proof of Proposition 7, for given beliefs μ_{w} and μ_{s}, the expected output distribution of the weak and strong contestants are

$$
\begin{gathered}
L_{s 2}^{*}(x)=\left\{\begin{array}{cc}
\frac{k x^{\alpha}}{p_{2}\left(1-\mu_{s}\right)}, & 0 \leq x \leq x_{s}^{*} \\
1, & x_{s}^{*} \leq x \leq x^{*}, ~ H_{s 2}^{*}(x)=\left\{\begin{array}{cc}
0, & 0 \leq x \leq x_{s}^{*} \\
\frac{k x^{\alpha}-k x_{s}^{* \alpha}}{p_{2} \mu_{s}}, & x_{s}^{*} \leq x \leq x_{w}^{*} \\
1-\frac{k x^{\alpha}-k x^{\alpha}}{a^{h \alpha} p_{2} \mu_{w}}, & x_{w}^{*} \leq x \leq x^{*}
\end{array}\right. \\
L_{w 2}^{*}(x)=\left\{\begin{array}{cc}
\frac{k x^{\alpha}}{p_{2}\left(1-\mu_{w}\right)}+\frac{\mu_{s}-\mu_{w}}{1-\mu_{w}}\left(\frac{a^{h^{\alpha}}-1}{a^{h}-1}\right), & 0 \leq x \leq x_{s}^{*} \\
1-\frac{k x_{w}^{*} \alpha_{w}-k x^{\alpha}}{a^{h} p_{2}\left(1-\mu_{w}\right)}, & x_{s}^{*} \leq x \leq x_{w}^{*},
\end{array},\right. \text { and } \\
1, & x_{w}^{*} \leq x \leq x^{*}
\end{array}\right. \\
H_{w 2}^{*}(x)=\left\{\begin{array}{cc}
0, & 0 \leq x \leq x_{w}^{*} \\
1-\frac{k x^{* \alpha}-k x^{\alpha}}{a^{h \alpha} p_{2} \mu_{w}}, & x_{w}^{*} \leq x \leq x^{*} .
\end{array}\right.
\end{gathered}
$$

The expected output distributions are characterized by

$$
\begin{gathered}
F_{s 2}^{*}(x)=\left\{\begin{array}{cc}
\frac{k}{p_{2}} x^{\alpha}, & 0 \leq x \leq x_{w}^{*} \\
1-\frac{k x^{* \alpha}-k x^{\alpha}}{a^{h} p_{2}}, & x_{w}^{*} \leq x \leq x^{*}
\end{array}\right. \text { and } \\
F_{w 2}^{*}(x)=\left\{\begin{array}{cc}
\frac{k}{p_{2}} x^{\alpha}+\left(\frac{a^{h^{\alpha}}-1}{a^{h \alpha}}\right)\left(\mu_{s}-\mu_{w}\right), & 0 \leq x \leq x_{s}^{*} \\
1-\frac{k x^{* \alpha}-k x^{\alpha}}{a^{h \alpha} p_{2}}, & x_{s}^{*} \leq x \leq x^{*}
\end{array}\right.
\end{gathered}
$$

where

$$
\begin{aligned}
k x_{w}^{* \alpha} & =p_{2}\left(1-\mu_{w}\right), \\
k x_{s}^{* \alpha} & =p_{2}\left(1-\mu_{s}\right), \text { and } \\
k x^{* \alpha} & =p_{2}\left(1-\mu_{w}\right)+p_{2} \mu_{w} a^{h^{\alpha}} .
\end{aligned}
$$

[^0]: ${ }^{1}$ Here we technically are assuming the contestant wins all ties at zero, but if the agent exerts a tiny amount of effort and we let that effort shrink to zero, then this is the payoff of the agent in the limit. Since the payoffs are continuous, these limits must be the payoffs of the low ability contestants.

[^1]: ${ }^{2}$ The right hand side of equation (17) is continuous in x and uniformly Lipshitz continuous in $F_{1}^{*}(x)$ on the interval of $\left[x_{h *}, x_{\ell}^{*}\right]$. Also, due to the properties of the cost function, the distribution function is bounded between 0 and 1 .

