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Generalizing the Payo� Structure

In this section we con�rm the robustness of our results by considering more general prefer-

ences. Suppose that the agent cares both about the principal's decision to adopt the project,

and the net pro�t from the project, θ−c. Speci�cally, if the project is adopted by the principal

the agent's payo� is

(1− α) + α(θ − c),

where α ∈ [0, 1] measures the weight that the agent assigns to the net pro�t from the project.

Thus, α parameterizes the degree of preference alignment between the players. We obtain the

following result.

Proposition 6. For each c ∈
[

n+4
2(n+2)

, n
n+2

]
there exists a non-empty interval (0, α′(c)], such

that:

(i) For all α ∈ (0, α′(c)] the equilibrium allocation is strictly interior and the investment

decreases in the project cost;

(ii) The upper bound α′(c) increases in the project cost, so that for a higher cost, there is a

larger range of preferences where the result (i) holds;

(iii) The equilibrium investment weakly increases in α, as long as α′(c) ≤ 3
4
.

Theorem 6 provides a robustness check of the results in Theorem 1. Particularly, when the

alignment between the agent's and the principal's preferences is limited, in the sense that α is

su�ciently small, the equilibrium has the same qualitative features as in the baseline model:

the agent splits the resources between productive investment and information acquisition, and

an increase in project cost leads to a lower productive investment and more information acqui-

sition.

An increase in preference alignment embodied in higher α raises the agent's willingness to

make productive investment. This is natural since the principal prefers that all resources are

invested. So, a higher α is associated with smaller ine�ciency in resource allocation.

Finally, the range of α on which the comparative statics of Theorem 1 holds increases in

the project cost. So, when the project cost is su�ciently high, the investment decreases in the

project cost even for large α's i.e., more aligned players' preferences.

Proof of the Proposition 6: Recall that in equilibrium the principal approves the project if

j ≥ j∗ = ⌈c(n+ 2)⌉ − (k + 1), where k is the principal's belief about the agent strategy.
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Suppose that the agent deviates to investment k−d, d ∈ {−(n−k), .., k}, while the principal
believes that investment level is k. Then, the agent's payo� is

Pr(j ≥ j∗|k, d)
(
α(E[θ|k, d]− c) + (1− α)

)
,

which can be rewritten as:

D(k, d, c, α) ≡
n−(k−d)∑
j=j∗(k)

(1 + (k − d))(j + (k − d))!(n− (k − d))!

j!(n+ 1)!

(
α

(
(k − d) + j + 1

n+ 2

)
+ (1− α)

)
=

2− α + k − d+ αc(2 + k − d)

2 + k − d
−

1

2 + k − d

((n− k + d)!(⌈c(n+ 2)⌉ − d− 1)!(α(k − d+ 1)⌈c(n+ 2)⌉
(n+ 2)!(⌈c(n+ 2)⌉ − (k + 2))!

+

α(c(n+ 2)(d− k − 2)− (k − d)(n+ d) + d− 2(k + n+ 2)) + (n+ 2)(k − d+ 2))

(n+ 2)!(⌈c(n+ 2)⌉ − (k + 2))!

)
.

The equilibrium requires that at the investment level k∗, there is no deviation incentive for

the agent to any feasible k − d, d ̸= 0. In other words, the equilibrium condition requires that

the function D(k, d, c, α) is maximized at d = 0. Formally, the following has to be satis�ed in

an equilibrium:

∂D(k, d, c, α)

∂d

∣∣∣
d=0

= 0 ⇐⇒ D3(k, c, α) ≡ −α +
(n− k)!(⌈c(n+ 2)⌉ − 1)!

(n+ 2)!(⌈c(n+ 2)⌉ − (k + 2))!
×

[(
−α⌈c(n+2)⌉(k+1)(k+2)+(2+k)(α(1+c)−1)(2+k)(2+n)

)
(ψ(n−k+1)−ψ(⌈c(n+2)⌉))+

α⌈c(n+ 2)⌉+ (2 + k)(α(k + 1))
]
= 0.

As we know from the proof of the baseline model,D(k∗, c, α = 0) > 0, with k∗ = n+2−⌈c(n+2)⌉
(see the proof of Proposition 1).15 Since for α = 0, D3(k

∗ − 1, c, α = 0) = 0 which follows

directly from the fact that ψ(n− k + 1)− ψ(⌈c(n+ 2)⌉) = 0 when assuming k = k∗ − 1, it has

to be the case that D3(k < k∗ − 1, c, α = 0) < 0 and D3(k > k∗, c, α = 0) > 0.

Let us consider k in the domain [1, n − 1]. Note that as long as there exists α > 0 and

k ∈ [1, .., n− 1] that solve D3(k, c, α) = 0, we have ∂D3(k,c,α)
∂α

< 0. This is because

∂D(k, c, α)

∂α

∣∣∣
d=0

= −
Γ(−k+n+1)((k+1)⌈c(n+2)⌉+(−c−1)(k′+2)(n+2))Γ(⌈c(n+2)⌉)

Γ(n+3)Γ(−k+⌈c(n+2)⌉−1)
+ c(k + 2) + 1

k + 2
< 0

for any feasible k.

This means that as α increases, D3(k, c, α) decreases, and therefore a larger investment k

15Recall that due to the discrete support of D3(k, c, α = 0) in the baseline model, for high enough costs the
equilibrium investment is such that D3(k

∗, c, α = 0) ≥ 0.
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is required to satisfy the agent's incentive constraint.

To see that there exists a non-empty interval (0, α(c)] that solves D3(k, c, α) for any α ∈
(0, α(c)], note that for α = 0, ∂D3(k,c,α=0)

∂k
> 0 at k = k∗ − 1, and for all k in a neighborhood

[k∗ − 1− δ(c), k∗ − 1 + δ(c)], with δ(c) > 0. Since increase in α decreases D3(·) provided that

there exists k, α solving D3(k
′, c, α) = 0, it must be that there exists a non-empty interval

(0, α(c)] where each α in this interval solves D3(k
′, c, α) = 0.

Next, we show that D3(k, c, α) increases in c for all α. This means that a lower investment

solves the equality. We know thatD3(k, c, 0) increases in c. To see that the derivative is positive,

consider again D3(k, c, α), and note the following. First, ψ(n−k+1)−ψ(⌈c(n+2)⌉) decreases
in c. The term in front of this di�erence is negative for α ≤ 3(n+2)

6(n+1)−2n
, where 3(n+2)

6(n+1)−2n
≥ 3

4
.

Further, the expression

(n− k)!(⌈c(n+ 2)⌉ − 1)!

(n+ 2)!(⌈c(n+ 2)⌉ − (k + 2))!
α⌈c(n+ 2)⌉ = a(n− k)!(⌈c(n+ 2)⌉)!

(n+ 2)!(⌈c(n+ 2)⌉ − (k + 2))!

increases in c for α > 0. Therefore, D3(k, c, α) decreases in c. But then, as long as there exists

α that satis�es D3(k, c, α) = 0, the trade-o� from the baseline model holds.

Finally, since D3(k, c, α) increases in c, the interval of α supporting D3(k, c, α) = 0 in-

creases with higher costs. Consider α′
max(c). If the project cost increases (and so, the function

D3(k, c, α) increases), then there exists an additional interval for α where the model's results

hold. Q.E.D.
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