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A Correlated Admission Probabilities

In the main text, we consider a setting in which a rejection from school i is completely
uninformative about the probability of admission to school j. This is done mainly in order
to simplify notation and to make the presentation of our predictions clear. We now focus
on the other extreme case, where school priorities are perfectly correlated, which we view as
the most empirically relevant alternative. We show that our main results hold. We apply
this extension to the two-school flipping example (section 2.3) and (in appendix D) to the
general n-school extension (section 2.5). The application to omissions is straightforward but
less insightful.

As in the main text, we assume that a latent variable εθs reflects the θ-indexed applicant’s
priority at school s; she gets admitted (conditional on proposing) if εθs > κs for some known
cutoff κs. Dropping the subscript θ for ease of presentation, the probability of admission to
a school conditional on proposing to it is therefore given by

Pr(εθs ≥ κs|Rejections from schools ranked above s).

Departing from the main text, we do not assume εs⊥εs′ ∀s 6= s′. Instead, we assume the
other extreme, i.e., εs = ε for all s ∈ S, that is, priorities are perfectly correlated. Assume
that ε is distributed according to a continuous, strictly increasing CDF F . Then we can
assume WLOG that ε is uniformly distributed over [0, 1] and that each school’s threshold
κs is in [0, 1].1 Conditional on a rejection from a school with a threshold κs, ε is uniformly
distributed on [0, κs]. Redefine qi ≡ 1 − κsi to be the probability of admission to school
si when it is ranked first. Then conditional on a rejection from school sj, the updated
probability of admission to school si is not qi (as in the zero-correlation case in the main
text) but max

{
qi−qj
1−qj , 0

}
.

As before, we denote the list s1�̂s2 by r∗. In addition, we denote the flipped list s2�̂s1 by
r′. The unconditional probabilities given each list are therefore p1(r∗) = q1, p2(r∗) = q2 − q1
and p1(r′) = 0, p2(r′) = q2. Inequality (3) from the main text now takes the form

[2q1 − (λ− 1) q1 (1− q1)]m < 2q1 − (λ− 1) [q2 (1− q2)− (q2 − q1) (1− (q2 − q1))] , (1)

where m ≡ m1

m2
.

To get a sense of how correlation quantitatively affects our predictions, we can go back
1To see why, notice that since F is strictly monotonic, ε ≥ κs is equivalent to F (ε) ≥ F (κs) and that

since F is continuous, F (ε) is uniformly distributed over the unit interval.
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to the example from section (2.3), where q1 = 1
2
, q2 = 1, and λ = 3. With these parameters,

the condition for flipping reduces to m < 3, the same cutoff as in the uncorrelated case from
the main text. However, with q1 = 1

4
, q2 = 1

2
and λ = 3, the condition for flipping becomes

m < 3 in the correlated case but m < 21
3
in the uncorrelated case. It can be shown that

given λ and the same baseline probabilities q1 and q2, the range of m such that flipping is
preferred is weakly wider in the perfect- than in the zero-correlation case, as is clearly visible
in figure 1.

B Prior Expectations

B.1 Two Schools

In this section we relax the assumption that Lori’s inherited beliefs are 0 in all dimensions,
and examine other possible prior expectations. We consider three possible beliefs entering
submission period: (a) Lori expected to attend s1 (with probability 1); (b) Lori expected
to attend s2 (with probability 1); and (c) Lori expected the lottery generated by ranking
truthfully (that is, attending s1 with probability q1 and s2 with probability (1− q1)q2).

Table B.1: Utility with Prior Expectations

Submission Utility Prior Expectations
(s1, 0; s2, 0) (s1, 1) (s2, 1) L

(
s1�̂s2

)
(Baseline) (s1 for sure) (s2 for sure) (Truthful)

u1
(
L
(
s1�̂s2

))
q1m1 + (1− q1)q2m2 −λ(1− q1)m1 + (1− q1)q2m2 q1m1 − λ(1− (1− q1)q2)m2 0

u1
(
L
(
s2�̂s1

))
(1− q2)q1m1 + q2m2 −λ(1− (1− q2)q1)m1 + q2m2 (1− q2)q1m1 − λ(1− q2)m2 −λq1q2m1 + q2q1m2

u1 (L (s1)) q1m1 −λ(1− q1)m1 q1m1 − λm2 −λ(1− q1)q2m2

u1 (L (s2)) q2m2 −λm1 + q2m2 −λ(1− q2)m2 −λq1 + q1q2m2

u1 (L (∅)) 0 −λm1 −λm2 −λq1m1 − λ(1− q1)q2m2

Notes: Period-1 news utility from submitting different ROLs, given different prior expectations.

Table B.1 shows period-1 news utility from all possible ROLs, given different prior ex-
pectations, assuming independent priorities. In general, period-1 utility in each dimension i
in this case is given by

ui1 (p|p̂) =

(pi − p̂i)mi pi ≥ p̂i

−λ(p̂i − p)mi p̂i > pi
,

where pi denotes as usual the ROL-determined probability of attending si, and p̂i denotes
the probability Lori assigned to attending si entering period 1. Since Lori updates her beliefs
according to her submitted ROL, period-2 utility is not affected by prior expectations. Of
course, period-3 consumption utility is not affected by prior beliefs either.
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When Lori enters period 1 expecting to attend a school si with probability 1 (that is,
when p̂i = 1), the incentive to omit si from the ROL completely vanishes. To see why,
observe that for any pi, λmi > λ(1− pi)mi+(λ− 1)pi(1− pi)mi. The LHS of this inequality
is the cost of omitting si, and the RHS is the cost of including it, both assuming p̂i = 1.
Using similar arguments, we can show that the same is true for both schools when prior
expectations are the lottery generated by the submission of a truthful list.

Figures B.1-B.3 show the model’s predicted submission for various values of q1, q2, m and
λ, assuming independent priorities (panel a) and perfectly correlated priorities (panel b).
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B.2 Funded Positions

We now examine the effect of prior expectations on observed violations of FOSD (obvious
misrepresentations). Let p̂ be the probability that Lori assigns to getting a funded position
entering period 1. The amount of funding is given by $x. In period 1 Lori learns that if she
ranks the funded position truthfully, she will get it with probability p. For simplicity, we
focus on the omission versus ranking truthfully only. First, if Lori is overoptimistic, that is,
if p̂ > p, omission is preferred to ranking truthfully iff

−λp̂mmoney(x) > −λ(p̂− p)mmoney − (λ− 1)p(1− p)mmoney + pmmoney.

It is straightforward to see that this inequality never holds, so Lori is never predicted to omit
funding in this case.

Second, if Lori is pessimistic (or otherwise is less aware of funding prior to the submission
period), or p̂ < p, then she prefers to omit over ranking truthfully iff

−λp̂mmoney(x) > (p− p̂)mmoney − (λ− 1)p(1− p)mmoney + pmmoney,

which reduces to
p̂ < p(1− p− 2

λ− 1
),

which means that if Lori enters period 1 with enough pessimism about her chances of receiv-
ing funding, and if she is sufficiently loss averse, she is predicted to obviously misrepresent.

C Omissions

We can analyze Lori’s decision when allowing for omissions and assuming λ > 3 in a few
simple steps. First, we check if U (L (s2)) ≥ 0, or q2 ≥ þ. Since q1 < q2, if this inequality
does not hold, Lori will not submit a ROL at all: even though she wants to attend a school,
she does not apply to any school in order to avoid disappointment. Second, we check if
U (L (s1)) > 0, or q1 ≥ þ. It is straightforward to see that if q1 < þ ≤ q2, Lori ranks only
s2. If both q1 and q2 are greater than þ, we check whether Lori will want to add s1 to her
list below s2. Since q1(1 − q2) < q2(1 − q1) by assumption, if q1(1 − q2) > þ holds, then
Lori will list both schools, and the analysis continues as in 2.3. If adding s2 under s1 is
utility decreasing (q2(1 − q1) < þ), then Lori ranks only one school and compares between
s1 and s2.2 She submits s2 if U (L (s2)) > U (L (s1)), and s1 otherwise. Note that this

2Note that the omission of s2 is possible even when s2 is a “safe school,” that is, even when q2 = 1. Since
q1 < 1, there is a chance that Lori will not get matched with any school, and yet, she chooses not to rank
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inequality depends both on λ and the probabilities, which determine the degree of expected
loss, and on m, which captures by how much Lori prefers s1 over s2. In words, Lori trades
off her future expected loss and future consumption utility. Last, if q2(1 − q1) > þ but
q1(1 − q2) < þ then Lori compares s1�̂s2 and s2, which also trades off between future loss
and future consumption.

D Proof of Section 2.5’s Proposition

Proof. Denote the truthful ROL by r∗. Assume by contradiction that there exists such a
pair si, si+1, and that for every mi,mi+1, r∗ is optimal.

Denote pj(r∗) by pj:

pj ≡ (1− q1) · (1− q2) · ... · (1− qj−1) · qj = qj·
j−1∏
k=1

(1− qk).

Denote q̃1 ≡ pi and q̃2 ≡ qi+1·
i−1∏
k=1

(1 − qk). Hence, q̃1 and q̃2 are the (unconditional)

probabilities of getting matched with schools si and si+1, respectively, if they are ranked at
the ith place (with the remainder of the list according to r∗). Notice that if we restrict our
attention to dimensions i and i + 1, q̃1 and q̃2 are the same as q1 and q2 from section 2.3.
Since qi+1 > qi by assumption, we have q̃2 > q̃1. We can now proceed with the analysis
as in section 2.3 from the main text, focusing on schools si and si+1: If Lori flips si and
si+1 keeping the rest of her ranking unchanged, then pj, and thus uj, will remain constant
for j 6= i, i + 1. If mi,mi+1 satisfy (3) (it is straightforward to see that if q̃1 > q̃2, we can
find such mi,mi+1), flipping si and si+1 will strictly increase ui+ui+1, without changing the
utility in all other dimensions, and therefore ranking truthfully is not optimal.

We can extend the proof to the perfectly correlated case in a straightforward way using
the same general definition of qi as the probability of acceptance to a school when it is ranked
first. That is, we let S = {s1, s2, ..., sn} again be a set of schools, ordered from the most to
least preferred, and κ = (κ1, ..., κn) be the corresponding cutoffs with κj ∈ (0, 1) ∀j = 1, ..., n,
such that there exists at least one pair of schools si, si+1 with κi > κi+1. As above, we consider
two ROLs r∗ and r′, which are identical except that r′ flips schools i and i+1. We therefore
know that pj(r∗) = pj(r

′) for all j < i (because in both ROLs the order is identical up to i)
and for all j > i+ 1 (because they are both conditioning on rejections from the same set of
schools). Denote the variable ε|rejections from schools 1, ...i− 1 by ε̃. We can then redefine
the cutoffs κi, κi+1 as κ̃1, κ̃i+1 so that ε̃ is uniformly distributed over the unit interval as in A,

school s2 at all.
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and κ̃i+1 < κ̃i, so using the same notation as above we have q̃2 > q̃1. We can find m ≡ mi

mi+1

satisfying (1), and therefore flipping strictly improves Lori’s utility in dimensions i and i+1

as above, and we are done. Below we show that for any 0 < q1 < q2 ≤ 1 there exists m that
satisfies inequality (1), provided that λ > 1.

Showing that for any λ > 1 there exists m satisfying inequality (1). Notice that
(1) can be written as

2q1 (m− 1) < (λ− 1)
[
q1 (1− q1)m− q21 − q1 + 2q1q2

]
.

Since λ > 1 and q1 < q2, at m = 1, we have

LHS = 0 < RHS = (λ− 1)
(
2q1q2 − 2q21

)
.

Since both the RHS and the LHS are linear (and in particular continuous) in m, there exists
m > 1 that satisfies the inequality.

10



E Instructions (Reproduced From Li, 2017)
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F Derivation of Equation (5)

Recall that there are 4 prizes x1, ..., x4 ordered from highest to lowest. The player wins
each xi with probability pi, where pi is a function of the submitted ROL and the player’s
beliefs about others’ behavior. Under the assumptions we make in section 3, the timing is
the following: in period 1, the player submits the ROL and gets a positive surprise (relative
to expecting zero), in period 2, uncertainty is resolved and the player gets positive and/or
negative news utility. Consumption occurs in period 3. Periods 1 and 3 are simple to analyze:
in both of these periods the player enjoys the expected value of the lottery (in period 1 in
the form of a positive surprise relative to zero, and in period 3 in the form of expected
consumption). Therefore, the combined utility in these two periods is just:

2·
4∑
i=1

pixi.

We now focus on period 2. It is convenient to construct expected news utility from the
resolution of the lottery by looking at all possible prize comparisons. For example, comparing
x1 and x4 occurs in two possible states: First, in the event the player wins x1, the player
experiences a gain (positive surprise)

p4(x1 − x4).

This is the difference between the prizes, weighted by p4, the player’s expectation to get x4.
This event occurs with probability p1. Second, in the event that the player wins x4, the
player experiences a loss (disappointment)

p1λ(x4 − x1) = −λp1(x1 − x4).

This is the difference between the prizes, weighted by p1, the player’s expectation to get x1,
and the coefficient of loss aversion λ. This event occurs with probability p4.

Summing up both terms, the x1-to-x4 comparison yields in expectation

−(λ− 1)p1p4(x1 − x4).

In order to get the overall expected news utility in period 2, we need to apply the same
procedure to all pairs in the prize pool xi,xj j 6= i.3 Summing up over all terms yields

3In our case, the pairs (represented by their indices) are {1, 4},{1, 3},{1, 2},{2, 4},{2, 3} and {3, 4}.
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−(λ− 1)
4∑
i=1

pi
∑
j>i

pj(xi − xj).

Overall, the expected utility over the three periods is given by

u (x,p) = 2·
4∑
i=1

pixi − (λ− 1)
4∑
i=1

pi
∑
j>i

pj(xi − xj).

G Empirically Correct Beliefs

This appendix analyzes the model’s predictions under the assumption that subjects’ beliefs
are empirically correct. We start by estimating empirically correct probabilistic beliefs. For
each score-list combination, we estimate the probability of winning each of the four prizes
through simulation with the following data generating process (DGP). In each round, three
priority scores (one for each of the three other players in the group) and four additional
tie-breaking numbers are drawn uniformly. Conditional on the priority score drawn for each
player, the probability of the player submitting each of the 24 possible lists is taken to be the
same as its empirical density (across all player-rounds) for that priority score. We estimate
the probability of winning each prize by simulating the outcome of each list-priority score
combination 100,000 times. For example, we fix a priority score 5 and a list 1234 for one
player, simulate the DGP described above, and use the proportion of rounds that player won
the highest prize as the estimated probability of winning the highest prize when submitting
1234 with a priority score 5. We repeat this process for all other score-list combinations to
get a 4× 24× 10 matrix that has the probability of winning each of the four prizes, for each
24 possible ROLs, for each of the 10 priority scores. This distribution is empirically correct
in the sense that a player’s belief about other players’ behavior (and therefore about her
chances of winning each of the prizes given her priority score and submitted list) is correct.

Figure G.1a presents the theoretical predictions under the assumption that subjects’
beliefs are empirically correct. This assumption implies that each list results in a different
lottery, because when other players may misrepresent, there is a positive probability of
winning each of the prizes, for all score-list combinations. The figure therefore presents
predictions for each of the 24 possible lists.

The predictions in this case are qualitatively similar to the predictions in section 3.2 in
the main text: subjects with a high-enough λ submit lists with lower prizes on top, the higher
is their λ and the lower is their priority score. However, under this assumption, for a given λ,
the model predicts less misrepresentation; we therefore expand the range of λ’s for which we
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Figure G.1: Preferences over Lists and Empirical Distribution of Lists (Empirically Correct
Beliefs)
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(b) Empirical Distribution (Multiround)
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make predictions. Intuitively, when other subjects submit non-1234 lists, the expected loss
in payoff from misrepresentation is greater. In addition, while in the previous case ranking a
prize lower than its relative value completely eliminates the probability of winning it, in this
case the probability of winning the downranked prize remains always positive, so flipping is
less effective in reducing the dispersion of the distribution and hence in avoiding loss. For
this reason, complete reversal (4321) is predicted only for subjects with rather high λ’s.

In figure G.1b, we show for each priority score the empirical distribution of each of the 24
possible lists separately. Comparing G.1b to the predictions in G.1a, the empirical patterns
seem to be consistent with the theoretical predictions (for higher λ’s) also with empirically
correct beliefs. 2134 is most common among subjects with medium-to-high priority scores,
while 3214 and 4321 are most common among low-to-medium-score subjects. The model
sometimes predicts lists that are not empirically common (e.g., 3241), but the difference
in utility between them and other, empirically common lists (e.g., 3214) is small and is
therefore consistent with a small, unexplained error term. Similarly, the list 4312, which is
never predicted by the model, seems to be somewhat common at low priority scores, but
again, the difference in utility between this list and 4321 is negligible.

H Raw Distribution of Lists

Table H.1: Empirical Distribution of Eight List Sets (Multiround, Misrepresenters Only)

ROLs #ROLs Priority Score
1 2 3 4 5 6 7 8 9 10

1234 1 34.0% 37.9% 29.8% 44.4% 33.3% 59.4% 60.0% 75.0% 73.8% 86.3%
1243 1 1.9% 1.7% 2.1% 0.0% 0.0% 3.1% 2.0% 0.0% 2.4% 0.0%
13XX 2 5.7% 5.2% 4.3% 2.8% 7.7% 0.0% 2.0% 0.0% 2.4% 2.0%
14XX 2 0.0% 1.7% 0.0% 2.8% 2.6% 0.0% 0.0% 0.0% 0.0% 2.0%
2*3*4* 3 3.8% 5.2% 10.6% 19.4% 23.1% 18.8% 16.0% 18.8% 14.3% 3.9%
2*4*3* 3 0.0% 3.4% 10.6% 0.0% 2.6% 3.1% 4.0% 0.0% 0.0% 2.0%
3XXX 6 18.9% 15.5% 21.3% 11.1% 17.9% 0.0% 10.0% 3.1% 2.4% 0.0%
4XXX 6 35.8% 29.3% 21.3% 19.4% 12.8% 15.6% 6.0% 3.1% 4.8% 3.9%
Total 24 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
N 53 58 47 36 39 32 50 32 42 51

Notes: Share of decisions as a percentage of choice situations with the same priority score. ROLs are
grouped into sets as explained in figure 4a.
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Table H.2: Empirical Distribution of Eight List Sets (One Shot)

ROLs #ROLs Priority Score
1 2 3 4 5 6 7 8 9 10

1234 1 92.3% 26.7% 69.6% 47.8% 71.4% 47.1% 55.0% 87.5% 81.8% 81.0%
1243 1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 5.0% 0.0% 0.0% 0.0%
13XX 2 0.0% 0.0% 0.0% 0.0% 0.0% 5.9% 0.0% 0.0% 0.0% 9.5%
14XX 2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
2*3*4* 3 7.7% 33.3% 8.7% 21.7% 21.4% 23.5% 25.0% 4.2% 4.5% 0.0%
2*4*3* 3 0.0% 0.0% 0.0% 4.3% 0.0% 0.0% 5.0% 0.0% 4.5% 0.0%
3XXX 6 0.0% 13.3% 21.7% 13.0% 0.0% 17.6% 0.0% 0.0% 0.0% 9.5%
4XXX 6 0.0% 26.7% 0.0% 13.0% 7.1% 5.9% 10.0% 8.3% 9.1% 0.0%
Total 24 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
N 13 15 23 23 14 17 20 24 22 21

Notes: Share of decisions as a percentage of choice situations with the same priority score. ROLs are
grouped into sets as explained in figure 4a.
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Table H.3: Empirical Distribution of Lists (Multiround)

ROL Priority Score
1 2 3 4 5 6 7 8 9 10

1234 61.1% 57.1% 58.8% 67.7% 55.2% 79.0% 74.4% 85.7% 84.3% 91.3%
1243 1.1% 1.2% 1.3% 0.0% 0.0% 1.6% 1.3% 0.0% 1.4% 0.0%
1324 2.2% 3.6% 2.5% 1.6% 3.4% 0.0% 1.3% 0.0% 1.4% 0.0%
1342 1.1% 0.0% 0.0% 0.0% 1.7% 0.0% 0.0% 0.0% 0.0% 1.3%
1423 0.0% 1.2% 0.0% 1.6% 1.7% 0.0% 0.0% 0.0% 0.0% 0.0%
1432 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.3%
2134 1.1% 1.2% 3.8% 6.5% 12.1% 8.1% 10.3% 7.1% 5.7% 1.3%
2143 0.0% 1.2% 3.8% 0.0% 1.7% 0.0% 0.0% 0.0% 0.0% 1.3%
2314 1.1% 2.4% 2.5% 1.6% 3.4% 1.6% 0.0% 3.6% 1.4% 1.3%
2341 0.0% 0.0% 0.0% 3.2% 0.0% 0.0% 0.0% 0.0% 1.4% 0.0%
2413 0.0% 1.2% 2.5% 0.0% 0.0% 0.0% 2.6% 0.0% 0.0% 0.0%
2431 0.0% 0.0% 0.0% 0.0% 0.0% 1.6% 0.0% 0.0% 0.0% 0.0%
3124 1.1% 2.4% 2.5% 1.6% 5.2% 0.0% 5.1% 0.0% 1.4% 0.0%
3142 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3214 6.7% 6.0% 7.5% 4.8% 3.4% 0.0% 0.0% 1.8% 0.0% 0.0%
3241 0.0% 0.0% 1.3% 0.0% 0.0% 0.0% 1.3% 0.0% 0.0% 0.0%
3412 0.0% 0.0% 1.3% 0.0% 3.4% 0.0% 0.0% 0.0% 0.0% 0.0%
3421 3.3% 2.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
4123 1.1% 2.4% 1.3% 0.0% 1.7% 3.2% 1.3% 0.0% 0.0% 1.3%
4132 0.0% 1.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
4213 1.1% 1.2% 0.0% 1.6% 5.2% 1.6% 1.3% 0.0% 0.0% 0.0%
4231 1.1% 2.4% 2.5% 0.0% 0.0% 0.0% 0.0% 1.8% 0.0% 0.0%
4312 0.0% 4.8% 5.0% 4.8% 0.0% 0.0% 0.0% 0.0% 0.0% 1.3%
4321 17.8% 8.3% 3.8% 4.8% 1.7% 3.2% 1.3% 0.0% 2.9% 0.0%
Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
N 90 84 80 62 58 62 78 56 70 80

Note: Share of decisions as a percentage of choice situations with the same priority score.
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Table H.4: Empirical Distribution of Lists (Multiround, Misrepresenters Only)

ROL Priority Score
1 2 3 4 5 6 7 8 9 10

1234 34.0% 37.9% 29.8% 44.4% 33.3% 59.4% 60.0% 75.0% 73.8% 86.3%
1243 1.9% 1.7% 2.1% 0.0% 0.0% 3.1% 2.0% 0.0% 2.4% 0.0%
1324 3.8% 5.2% 4.3% 2.8% 5.1% 0.0% 2.0% 0.0% 2.4% 0.0%
1342 1.9% 0.0% 0.0% 0.0% 2.6% 0.0% 0.0% 0.0% 0.0% 2.0%
1423 0.0% 1.7% 0.0% 2.8% 2.6% 0.0% 0.0% 0.0% 0.0% 0.0%
1432 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.0%
2134 1.9% 1.7% 6.4% 11.1% 17.9% 15.6% 16.0% 12.5% 9.5% 2.0%
2143 0.0% 1.7% 6.4% 0.0% 2.6% 0.0% 0.0% 0.0% 0.0% 2.0%
2314 1.9% 3.4% 4.3% 2.8% 5.1% 3.1% 0.0% 6.3% 2.4% 2.0%
2341 0.0% 0.0% 0.0% 5.6% 0.0% 0.0% 0.0% 0.0% 2.4% 0.0%
2413 0.0% 1.7% 4.3% 0.0% 0.0% 0.0% 4.0% 0.0% 0.0% 0.0%
2431 0.0% 0.0% 0.0% 0.0% 0.0% 3.1% 0.0% 0.0% 0.0% 0.0%
3124 1.9% 3.4% 4.3% 2.8% 7.7% 0.0% 8.0% 0.0% 2.4% 0.0%
3142 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3214 11.3% 8.6% 12.8% 8.3% 5.1% 0.0% 0.0% 3.1% 0.0% 0.0%
3241 0.0% 0.0% 2.1% 0.0% 0.0% 0.0% 2.0% 0.0% 0.0% 0.0%
3412 0.0% 0.0% 2.1% 0.0% 5.1% 0.0% 0.0% 0.0% 0.0% 0.0%
3421 5.7% 3.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
4123 1.9% 3.4% 2.1% 0.0% 2.6% 6.3% 2.0% 0.0% 0.0% 2.0%
4132 0.0% 1.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
4213 1.9% 1.7% 0.0% 2.8% 7.7% 3.1% 2.0% 0.0% 0.0% 0.0%
4231 1.9% 3.4% 4.3% 0.0% 0.0% 0.0% 0.0% 3.1% 0.0% 0.0%
4312 0.0% 6.9% 8.5% 8.3% 0.0% 0.0% 0.0% 0.0% 0.0% 2.0%
4321 30.2% 12.1% 6.4% 8.3% 2.6% 6.3% 2.0% 0.0% 4.8% 0.0%
Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
N 53 58 47 36 39 32 50 32 42 51

Note: Share of decisions as a percentage of choice situations with the same priority score.
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Table H.5: Empirical Distribution of Lists (One Shot)

ROL Priority Score
1 2 3 4 5 6 7 8 9 10

1234 92.3% 26.7% 69.6% 47.8% 71.4% 47.1% 55.0% 87.5% 81.8% 81.0%
1243 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 5.0% 0.0% 0.0% 0.0%
1324 0.0% 0.0% 0.0% 0.0% 0.0% 5.9% 0.0% 0.0% 0.0% 9.5%
1342 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
1423 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
1432 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
2134 0.0% 20.0% 8.7% 13.0% 14.3% 17.6% 20.0% 4.2% 4.5% 0.0%
2143 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 5.0% 0.0% 0.0% 0.0%
2314 0.0% 6.7% 0.0% 4.3% 0.0% 5.9% 5.0% 0.0% 0.0% 0.0%
2341 7.7% 6.7% 0.0% 4.3% 7.1% 0.0% 0.0% 0.0% 0.0% 0.0%
2413 0.0% 0.0% 0.0% 4.3% 0.0% 0.0% 0.0% 0.0% 4.5% 0.0%
2431 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3124 0.0% 0.0% 8.7% 0.0% 0.0% 5.9% 0.0% 0.0% 0.0% 0.0%
3142 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3214 0.0% 6.7% 8.7% 4.3% 0.0% 5.9% 0.0% 0.0% 0.0% 4.8%
3241 0.0% 0.0% 0.0% 8.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3412 0.0% 6.7% 4.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3421 0.0% 0.0% 0.0% 0.0% 0.0% 5.9% 0.0% 0.0% 0.0% 4.8%
4123 0.0% 6.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
4132 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 4.2% 4.5% 0.0%
4213 0.0% 0.0% 0.0% 4.3% 7.1% 0.0% 0.0% 0.0% 0.0% 0.0%
4231 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 5.0% 4.2% 4.5% 0.0%
4312 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
4321 0.0% 20.0% 0.0% 8.7% 0.0% 5.9% 5.0% 0.0% 0.0% 0.0%
Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
N 13 15 23 23 14 17 20 24 22 21

Note: Share of decisions as a percentage of choice situations with the same priority score.
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Figure H.1: Empirical Distribution of Lists (One Shot)

(a) Eight List Sets
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(b) All ROLs
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Notes: N = 192. Log density as a share of observations with the same priority score. Panel (a): ROLs are
grouped as explained in figure 4a.

I Face-Value Beliefs

Table I.1: Mixed and Standard Logit Specifications

(1) (2) (3) (4) (5)
Multiround One Shot Multiround Multiround Multiround

All All Misrepresenters Late Misrep. Misrepresenters
(Logit) (Logit) (Logit) (Logit) (Mixed Logit)

α1(normalized) 2 2 2 2 2
(0.1) (0.2) (0.15) (0.18) (0.14)

λ
1.77 1.63 2.54 2.90
(0.18) (0.37) (0.31) (0.38)

µλ
2.42
(0.45)

σλ
2.31
(0.37)

Log-likelihood −1717.43 −466.57 −1183.43 −999.17 −1154.51
Likelihood ratio test 20.02 3.16 29.14 29.25
p-value 0.000 0.076 0.000 0.000
N 720 192 440 360 440
Notes: The parameters were estimated through Maximum Likelihood (columns 1–4) and Maximum Sim-
ulated Likelihood with 1,000 draws (column 5). The probability of winning each prize is based on correct
beliefs about priorities, assuming other players play truthfully. Likelihood ratio test: df = 1, H0 : λ = 1.
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J Early vs Later Rounds

Figure J.1: Empirical Distribution of Lists (by Five Rounds)

(a) First Five Rounds
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(b) Last Five Rounds
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Notes: N = 360. Log density as a share of observations with the same priority score. Panel (a): ROLs are
grouped as explained in figure 4a.
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Table J.1: Standard Logit (Earlier vs Later Rounds)

(1) (2)
Multiround Multiround

First 5 Rounds Last 5 Rounds
(Logit) (Logit)

α1(normalized) 2 2
(0.14) (0.12)

λ
1.86 2.10
(0.28) (0.24)

Log-likelihood −877.67 −766.17
Likelihood ratio test 10.37 24.64
p-value 0.001 0.000
N 360 360

Notes: The parameters were estimated through Maximum Likelihood. The probability of winning each
prize is the simulated probability as described in 3.2. Likelihood ratio test: df = 1, H0 : λ = 1.
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