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Proof of Lemma 1

As the �rst-best is implementable with the transfer function r̄ = (r̄1, . . . , r̄n), the following

must hold for all i ∈ C, θi ∈ Θi, θ̂ ∈ Θ, and a ∈ A:

πi(θi, θ̂−i)
[
B − c(a∗)

]
+Ri(θi, θ̂−i, a

∗ | θi) ≥ πi(θ̂)
[
B − c(a)

]
+Ri(θ̂, a | θi)

or, equivalently,

Ri(θi, θ̂−i, a
∗ | θi)−Ri(θ̂, a | θi) ≥ πi(θ̂)

[
B − c(a)

]
− πi(θi, θ̂−i)

[
B − c(a∗)

]
,

where Ri(θ̂, a | θi) ≡ Eỹ
[
r̄i(θ̂, ỹ) | θi, a

]
. Recall from the de�nition of transfer rules that for

each i ∈ C, r̄i(θ̂, y) only depends on y if π∗i (θ̂) = 1, so that Ri(θ̂, a | θi) only depends on a

and θi if π
∗
i (θ̂) = 1. Let Θ̂i ≡

{
θ̂ ∈ Θ: π∗i (θ̂) = 1

}
, and let K ≡

∑
i∈C |Θ̂i||A||Θi|+ |Θ\Θ̂i|,

so that R =
(
Ri(θ̂, a | θi)

)
i∈C,θi∈Θi,θ̂∈Θ,a∈A is a vector in RK . Note that if we change R to

R̂, where

R̂i(θ̂, a | θi) ≡


Ri(θ̂, a | θi) + γ if π∗i (θ̂) = π∗i (θi, θ̂−i) = 1 & a = a∗ ,

Ri(θ̂, a | θi)− γ if π∗i (θ̂) 6= π∗i (θi, θ̂−i) = 0 ,

Ri(θ̂, a | θi) otherwise,

for some �xed γ > 0, then the relevant incentive constraints hold strictly.

Now, let (Y1, . . . , YL), with L � K, be a partition of measurable subsets of [y, y]; let

µ(· | θi, a) be the probability measure on [y, y] induced by the c.d.f. F (· | θi, a); and let
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M ≡
∑

i∈C
[
L|Θ̂i|+ |Θ \ Θ̂i|

]
. De�ne the smooth function h : RM → RK by:

hi,θi,θ̂,a

((
ri,l(ϑ)

)
l=1,...,L,ϑ∈Θ̂i ,

(
si(ϑ)

)
ϑ/∈Θ̂i

)
i∈C
≡ R̂i(θ̂, a | θi)−

∑L
`=1 µ(Y` | θi, a)ri,l(θ̂) if π∗i (θ̂) = 1 ,

R̂i(θ̂, a | θi)− si(θ̂) otherwise,

for all i ∈ C, θi ∈ Θi, θ̂ ∈ Θ, and a ∈ A. Let D be the subset of RK that satis�es

the following condition: for all R =
(
Ri(θ̂, a | θi)

)
i∈C,θ̂∈Θ,a∈A,θi∈Θi

∈ D, Ri(θ̂, a | θi) ≤

R̂i(θ̂, a | θi) if θ̂i 6= θi and/or a 6= a∗, and Ri(θ̂, a | θi) ≥ R̂i(θ̂, a | θi) if θ̂i = θi and

a = a∗. An application of Sard's theorem (e.g., Guillemin and Pollack, 1974) implies that

for almost all R ∈ RK , zero is a regular value of h(·) + R. It follows that there exists

R◦ ∈ D such that the Jacobian of h(·) + R◦ has full row rank. By the Rouché-Capelli

theorem, this in turn implies that the system of K equations h
((
ri,l(ϑ)

)
,
(
si(ϑ)

))
+R◦ = 0

has a solution,
((
r∗l (ϑ)

)
,
(
s∗i (ϑ)

))
. Finally, de�ne the transfer function ρ = (ρ1, . . . , ρn) by

ρi(θ̂, y) ≡ r∗i,l(θ̂) for all i ∈ C, θ̂ ∈ Θ̂i, y ∈ Y`, and ρi(θ̂, y) = s∗i (θ̂) for all i ∈ C and θ̂ /∈ Θ̂i.

By construction, we thus have

Eỹ
[
ρi(θi, θ̂−i, ỹ) | θi, a∗

]
− Eỹ

[
ρi(θ̂, ỹ) | θi, a

]
≥ R̂i(θi, θ̂−i, a∗ | θi)− R̂i(θ̂, a | θi)

≥ Ri(θi, θ̂−i, a∗ | θi)−Ri(θ̂, a | θi) + γ

> πi(θ̂)
[
B − c(a)

]
− πi(θi, θ̂−i)

[
B − c(a∗)

]
,

whenever π∗i (θi, θ̂−i) 6= π∗i (θ̂), or π
∗
i (θ̂) = 1 and a 6= a∗. Since the candidates' type and

action sets are �nite, this ensures that there exists a positive number βi > 0 such that

any deviation from the optimal behavior would reduce i's payo� by at least βi. Setting

β ≡ maxi∈C βi, we thus obtain the lemma.

Proof of Lemma 2

Fix η and λ ∈ N. For any strategy pro�le σ, the payo� to candidate i ∈ C can be written

as

Ui(σ) = (1− δT )Eσ

[ ∞∑
b=1

δ(b−1)Tubi(σ)

]
,
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where

ubi(σ) ≡ 1− δ
1− δT

1{ebi=0}

T∑
t=1

δt−1
[
πηi (ϑ(b−1)T+t) + ϕbi

][
B − c(a(b−1)T+t

i )
]
.

Let p̃T denote the empirical distribution of types pro�le in a block of T periods. For

any γ > 0, the following holds for su�ciently large T ∈ N:

Prσ∗
i ,σ−i

[
ebi = 0 | eb−1

i = 0
]

= Prσ∗
i ,σ−i

{∣∣∣[B − c(a∗)]−1
φb−1
i

∣∣∣ < η
}

= Prσ∗
i ,σ−i

{∣∣∣∣∣Ep̃T ,y
[
ri(θ, y) | a∗

]
− Eθ,y

[
ri(θ, y) | a∗

][
B − c(a∗)

] ∣∣∣∣∣ < η

}
> 1− γ ,

where the second equality follows from the observation that Eθ,y
[
ri(θ, y) | a∗

]
= 0, and the

inequality from Escobar and Toikka's (2013) Lemma 5.1. By the same logic, for any γ > 0

(independent of b), we have
∣∣Eσ∗

i ,σ−i [ϕ
b
i | e

b−1
i = 0]

∣∣ < γ if T is su�ciently large. Finally,

it is well-known that for any γ > 0, we have

sup

{∣∣∣∣∣ 1

T

T∑
t=1

vt − 1− δ
1− δT

T∑
t=1

δt−1vt

∣∣∣∣∣ : (v1, . . . , vT ) ∈ [0, B]T

}
< γ

if we let T →∞ and δ → 1.

Now for each i ∈ C, let vηi ≡ Eθ
[
πηi (θ)

[
B − c(a∗)

]]
. Together with Escobar and

Toikka's (2013) Lemma 5.1, the above inequalities imply that for all γ ∈ (0, vηi ), taking T

su�ciently large and then δ su�ciently close to one, the following holds for every σ−i:

E
[
ubi(σ

∗
i , σ−i) | ebi = 0

]
> Eθ

[
πηi (θ)

[
B − c(a∗)

]]
− γ = vηi − γ

> 0 = E
[
ubi(σ

∗
i , σ−i) | ebi > 0

]
.

Consequently, for all σ−i, Ui(σ
∗
i , σ−i) is bounded below by the (�ctitious) payo�, denoted

V i, which candidate i would obtain if it received vηi −γ in every block where she is eligible,

0 in the other blocks, and her probability of becoming ineligible was held constant at γ

across blocks. As i (like all the candidates) is eligible at the start of the initial block, we

have

V i = (1− δT )(vηi − γ) + δT (1− γ + γδλT )V i
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or, equivalently,

V i =
1− δT

1− δT (1− γ + γδλT )
(vηi − γ) .

An application of l'Hôpital's rule shows that

lim
δ→1

V i =
1

1 + γλ
(vηi − γ) . (A1)

By the same logic as above, for every γ > 0, if we let T → ∞ and then δ → 1, then

E
[
ubi(σ

∗
i , σ−i) | ebi = 0

]
< vηi + γ, for all σ−i. As v

η
i + γ > 0, Ui(σ

∗
i , σ−i) is bounded above

by the payo� candidate i would obtain if she got vηi +γ in every block. Coupled with (A1),

this implies that irrespective of σ−i, Ui(σ
∗
i , σ−i) approaches vηi as γ → 0 and, therefore,

as T → ∞ and δ → 1. This proves the �rst part of Lemma 2. The proof of part (ii) is

analogous.

Proof of Lemma 3

As explained above, we prove Lemma 3 in two steps. Step 1 shows that the payo� vector(
U1(σ∗), . . . , Un(σ∗)

)
is arbitrarily close to the Pareto frontier of the set of payo�s vectors

of Γ(η, λ, T, δ), so that the payo� to each candidate i ∈ C must be arbitrarily close to

vηi ≡ Eθ
[
πηi (θ)

[
B − c(a∗)

]]
in any PBE. Step 2 then uses Step 1 to establish that each

candidate i chooses the messages and actions prescribed by σ∗i arbitrarily often, so that the

voter's expected payo� approximates v∗ in any PBE (Lemma 2(ii)). Finally, as action sets

are �nite in Γ(η, λ, T, δ), it follows from Fudenberg and Levine's (1983) existence theorem

that such a PBE exists.

Step 1. Recall from the proof of Lemma 2 that, given any strategy pro�le σ, the payo�

to candidate i ∈ C in Γ(η, λ, T, δ) can be written as

Ui(σ) = (1− δT )Eσ

[ ∞∑
b=1

δ(b−1)Tubi(σ)

]
,

where ubi(σ) represents i's discounted payo� in block b.

Consider the choice of a strategy pro�le σ = (σ1, . . . , σn) be a utilitarian social planner

who seeks to maximize W ≡
∑

i∈C Ui. For every (arbitrarily small) γ > 0, let σγ be a
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strategy pro�le that satis�es W (σγ) ≥ supσW (σ)− γ. Now, for any block b ∈ N, consider

a deviation at the start of b (by the social planner) from σγ to the strategy pro�le σb,

which coincides with σ∗ = (σ∗1, . . . , σ
∗
n) in block b, and with σγ (taken at the null history,

regardless of the previous history of play) from block b + 1 onward. What is the impact

of such a deviation on W? First, the social planner may incur a loss in block b, which

is bounded above by (1 − δ)
∑T

s=1 δ
s−1
[
B − c(0)

]
= (1 − δT )B. Second, she may incur a

loss in block b + 1 caused by the change in the expected values of the ϕb+1
i 's and in the

elected candidates' actions. But this loss is also bounded above by (1 − δT )B. Third, as

we saw in the proof of Lemma 2, the probability that all candidates remain eligible at the

end of block b under σb is arbitrarily close to one. Hence, the social planner may also

obtain a gain by increasing the expected number of candidates who remain eligible at the

end of block b. More precisely, for every realization of the number of eligible candidates

Cb+1 ≡ {i ∈ C : eb+1
i = 0} at the end of block b, this gain is (approximately) bounded

below by

(1− δT )
∑

i∈C\Cb+1

λ∑
b=1

δ(b−1)T
[
vηi − 0

]
≥ |C \ Cb+1|(1− δλT ) min

i
vηi

for su�ciently large T and δ (recall from Lemma 2(i) that each candidate i's payo� is

arbitrarily close to vηi in every block under σ∗). Dividing this gain by (1− δT ) and letting

δ → 1, we obtain (1 − δT )−1(1 − δλT )|C \ Cb+1|mini v
η
i ≈ λ|C \ Cb+1|mini v

η
i ; so that,

whenever Cb+1 6= C, the social planner's gain increases without bound with λ. It follows

that if we let λ → ∞ (and γ → 0), the probability that any candidate becomes ineligible

at the end of any block b under σγ , Prσ̂{Cb+1 6= C}, must converge to zero � otherwise

the deviation would give the social planner a payo� greater than W (σγ) + γ. Hence, the

sum of the expected payo�s induced by σγ under the eligibility constraints of Γ(η, λ, T, δ)

is arbitrarily close to the sum of the payo�s which σγ would induce if these constraints

were ignored (i.e., if all candidates always remained eligible with probability one). Lemma

A1 (coupled with the principle of optimality) implies that, in the absence of eligibility

constraints, the sum of the payo�s would be maximized by choosing σ∗. Therefore, W (σγ)

must be arbitrarily close to W (σ∗) ≈
∑

i v
η
i or, put di�erently, W (σ∗) must be arbitrarily
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close to the Pareto frontier. Combined with Lemma A2, this implies that each candidate

i's payo� in any PBE of Γ(η, λ, T, δ) must be arbitrarily close to vηi .

Step 2. Take any candidate i ∈ C. We know that for su�ciently large λ, T and δ: (i)

Ui(σ) must be arbitrarily close to vηi for every PBE σ of Γ(η, λ, T, δ) (step 1); and (ii) i's

equilibrium payo� at the start of every block must be approximately bounded below by vηi

(otherwise, by Lemma A2(i), she could pro�tably deviate). Therefore, for every PBE σ,

we must have Eσ
[
ubi(σ)

]
≈ vηi for all b. By the same logic as in step 1, this implies that

the probability that i becomes ineligible in any block b must be close to zero in equilibrium

� otherwise, for arbitrarily large λ, the di�erence between i's equilibrium payo� (from b

onward) and vηi would also be arbitrarily large.

Now let η ≈ 0; let κ ≡ mina6=a∗
[
B − c(a) −

(
B − c(a∗)

)]
= mina6=a∗

[
c(a∗) − c(a)

]
>

0; and let σ = (σ1, . . . , σn) be any PBE of Γ(η, λ, T, δ), so that Ui(σ) ≈ vηi for every

i ∈ C. For every block b ∈ N, let ρbi(σ) be the expected proportion of the periods in

block b, among those in which candidate i is elected, where it fails to choose a∗; that is,

ρbi(σ)Eσ
[∑2T

t=(b−1)T+1 π
η
i (ϑti)

]
is approximately the expected number of periods in which

i is elected and does not choose a∗ � recall that the ϕbi 's are smaller than η in absolute

value. For su�ciently large T and δ, we thus have

Eσ
[
ubi(σ)

]
≈ 1

T
Eσ

 2T∑
t=(b−1)T+1

πηi (ϑti)
[
B − c(ati)

]
≥ 1

T
Eσ
[ 2T∑
t=(b−1)T+1

πηi (ϑti)

][
ρbi(σ)

[
κ+B − c(a∗)

]
+
[
1− ρbi(σ)

][
B − c(a∗)

]]
≈ Eθ

[
πηi (θ)

][
B − c(a∗) + ρbi(σ)κ

]
= vηi + E

[
πηi (θ)

]
ρbi(σ)κ ≥ vηi ,

where the second approximation follows from Escobar and Toikka's (2013) Lemma 5.1(ii).

As candidate i must be eligible arbitrarily often and her expected payo� must be arbitrarily

close to vηi (step 1), we must have ρbi(σ) ≈ 0 for an arbitrarily large proportion of blocks

b with a probability arbitrarily close to one. As we saw in the main text, it follows from

Lemma A1 that if candidate i expects to play a∗ arbitrarily often in block b+1 and is highly

likely to remain eligible at the end of block b, then it is optimal for her to play in accordance

with σ∗i arbitrarily often in block b. We conclude that in any PBE of Γ(η, λ, T, δ), each
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candidate imust play in accordance with σ∗i in an arbitrarily large proportion of blocks with

an arbitrarily high probability. Finally, Fudenberg and Levine's (1983) existence theorem

guarantees that such an equilibrium exists, thus completing the proof of Lemma 3.
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