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Online Appendix A: Small conflict

In this appendix we show that strategic uncertainty can be mutually beneficial in situations
where the conflict between the players is not large. Specifically, we say that there is a small conflict
between the players if qF < qS < qF < qS. Since the pure strategy equilibrium in which F takes

over the project Pareto dominates any mixed strategy equilibrium for q0 ≤ qF (Lemma 1 applies
regardless of the size of the conflict), we restrict attention to q0 ∈ (qF, qS) and we also assume that
there is a small conflict between the players throughout this appendix.24

The main results in this appendix correspond to the characterization, existence, and efficiency
results of Section IV. The next proposition establishes that, if there is a mixed strategy equilibrium,
the equilibrium characterized in Proposition 3 is the Pareto-dominant equilibrium in the class of
equilibria in mixed strategies.

Proposition 9. If E is a Pareto-undominated equilibrium in which F uses a mixed strategy, then
it is the equilibrium characterized in Proposition 3.

We relegate the proof of this key technical result to the end of the appendix. This result implies
that the characterization and existence results in the main text remain unaltered under the small
conflict assumption. However, the efficiency result in Section IV.C is obtained by comparing the
mixed strategy equilibrium characterized in Proposition 3 to the Pareto-dominant equilibrium in
the class of pure strategy equilibria, namely, the equilibrium in which S takes over the project at
t = 0. Under the small conflict assumption, there may exist additional equilibria in pure strategies
in which F learns, and so to obtain an efficiency result we must first characterize these additional
equilibria.

For the rest of this appendix we use Σ(τF) to denote the pure strategy profile in which F uses
the strategy τF and S best responds to it. Note that a strategy profile with a higher index τF is a
strategy profile in which F learns more.

Lemma A.1. If qS ≥ 1
1+vF

, then Σ(0) in the unique pure strategy equilibrium. If qS < 1
1+vF

, then

the set of Pareto-undominated pure strategy equilibria is {Σ(τF) : τF ≤ τ̂}, where τ̂ > 0 is defined
implicitly by

(A1) 1− lqSvF ≡
cF

λF
lq0

(
1− e−λFτ̂

)
+ cFτ̂ .

PROOF:
Since q0 < qS, in a pure strategy equilibrium S never launches the project without inspecting it

if he receives it at τF. Hence, when considering the optimal pure strategy equilibrium, there is no
loss of generality in assuming that F submits the project at τF (rather than terminating it) and S
best responds.

Consider the strategy profile Σ(τF). F’s expected payoff from this profile is

V F(τ) = (1− q0)

[(
lq0 − lqS

)
vF − cF

λF

(
1− e−λFτ

)
− cFτ

]
.

If τF > 0, then S launches the project if he receives it at t < τF. Hence, any deviation to τ < τF

by F will result in the project being launched with certainty. It follows that the most profitable

24As established in the text, the mixed strategy equilibrium we characterized does not exist if q0 ≥ qs.
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deviation for F is to fabricate a breakthrough and submit the project at t = 0, which, in turn,
implies that Σ(τF) is an equilibrium if and only if

V F(τF) ≥ q0v
F − (1− q0).

The previous inequality is equivalent to

1− lqSvF ≥
cF

λF
lq0

(
1− e−λτF

)
+ cFτF.

The right-hand side of this inequality is increasing in τF. As τ̂ is the value for which this condition
holds with equality, it follows that if τF < τ̂ , then Σ(τF) is an equilibrium. Moreover, note that
Σ(0) is an equilibrium in pure strategies as, for this strategy profile, F cannot manipulate S into
launching the project.

To summarize, the strategy profiles Σ(τF) for τF ∈ {0} ∪ (0, τ̂ ] are equilibria of this game.
Moreover, all these equilibria are Pareto-undominated as F’s (S’s) payoff is increasing (decreasing)
in τF. To complete the lemma, note that τ̂ = 0 if qS = 1

1+vF
.

The lemma shows that, if qS ≥ 1
1+vF

, then the Pareto-dominant equilibrium in pure strategies is
for S to take over the project at t = 0. As the Pareto-dominant equilibrium in pure strategies in a
small conflict is identical to the Pareto-dominant equilibrium in pure strategies in a large conflict,
the same argument used to derive Proposition 5 yields the following result.

Proposition 10. Assume that qS ≥ 1
1+vF

. If the equilibrium characterized in Proposition 3 exists,
then it is the Pareto-dominant equilibrium.

If, on the other hand, qS < 1
1+vF

, then under the small conflict assumption there are multiple
Pareto-undominated equilibria in pure strategies. Note that F’s preferred equilibrium in pure
strategies is the one in which S takes over the project at time zero. Hence, by the same argument
used in Section IV.C, if the equilibrium characterized in Proposition 3 exists, then it is Pareto-
undominated. By contrast, S’s preferred equilibrium in pure strategies is Σ(τ̂). Hence, comparing
S’s payoff in the mixed strategy equilibrium to his payoff as a DM—the comparison used to derive
Proposition 5—is not sufficient to establish that S is better off in the equilibrium with strategic
uncertainty.

Nevertheless, the method of the proof used to establish Proposition 5 can still be used to derive
an efficiency result. As explained in Section IV.C, S’s payoff in the equilibrium with strategic
uncertainty is the payoff he obtains as a DM with prior q0 who receives a signal about the state
that is induced by F’s learning. In particular, this signal has the support {1}∪

{
qF
}
∪
{
qSt
}
t∈[0,τ∗]

.

On the other hand, in Σ(τ̂), S’s payoff is that of a DM with prior q0 who receives a binary signal that

induces belief 1 with probability q0(1 − e−λFτ̂ ) and belief qτ̂ with the complementary probability.
Whether S prefers the mixed strategy equilibrium to the pure strategy equilibrium depends on the
value of these signals to S.

If τ̂ is small, then the value of the signal in the pure strategy equilibrium is also small. To see
this, observe that with high probability S’s belief after receiving the signal remains near the prior.
As S’s value function is bounded from above and is continuous in his belief, it follows that the
value of this signal vanishes as τ̂ converges to zero. As S’s value for the signal he receives in the
equilibrium with strategic uncertainty is strictly positive, it follows that if the latter equilibrium
exists, then it is the Pareto-dominant equilibrium if τ̂ is small enough. However, if τ̂ is large, it
may be the case that S prefers the signal he obtains in the pure strategy equilibrium to the signal
he obtains in the mixed strategy equilibrium. The above discussion is summarized in the following
proposition.
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Proposition 11. If the equilibrium characterized in Proposition 3 exists, then: (i) it is Pareto-
undominated, and (ii) there exists some ε > 0 such that if τ̂ < ε, it is the Pareto-dominant
equilibrium.

We now establish that Proposition 3 characterizes the Pareto-dominant mixed strategy equilib-
rium regardless of whether the conflict is large or small. To understand why this is the case, recall
that the indifference condition (3) pins down the equilibrium behavior under strategic uncertainty
when the continuation value is known. It turns out that strategic uncertainty is beneficial only
insofar as it allows F to take over the project at τ∗, which determines the efficient continuation
value and hence the equilibrium behavior.
PROOF OF PROPOSITION 9:

To establish this result, we first show that mixed strategies cannot be part of an efficient equi-
librium when q0 > qS (Lemma A.2). We then show that, at some point in time, moral hazard no
longer hinders the interaction (this result requires using the technical Lemma A.3). Lemma A.4
shows that the interaction evolves in the same manner that we described in Proposition 3. Finally,
we establish that in an efficient equilibrium where F uses a mixed strategy she must take over the
project when she can be trusted to do so (Lemmas A.5 and A.6).

In this proof we often use the strategy profile where 1) F does not fabricate breakthroughs if
qt > qω(E) and submits the project otherwise, and 2) S best responds to F’s strategy. We refer to
this profile as E’. Since submitting the project at any t < ω leads to the project being launched
in E’, if it is profitable for F to deviate and submit the project at t it is also profitable for her to
submit the project at t = 0. Therefore, to verify that E’ is an equilibrium it is sufficient to verify
that F’s equilibrium payoff in E’ at time zero is greater than her payoff from launching the project
immediately.

Lemma A.2. If q0 > qS, then F uses a pure strategy in any efficient equilibrium.

PROOF:
Assume by way of contradiction that q0 > qS and that E is an efficient equilibrium in which F

uses a mixed strategy. By Bayes’ law, qSt ≥ qt and so if F submits the project whenever qt > qS,
then S will respond by launching the project immediately. Since the project will be launched
whenever F submits it at any t > 0 such that qt > qS or at time zero, F would rather submit the
project at time zero in order to reduce her cost of learning. Hence, F does not submit the project
without a breakthrough at any t > 0 whenever qt > qS in E.

If t = 0 belongs to the support of GF, then there is an atom at t = 0. In this case, F’s equilibrium
payoff at t = 0 is equal to the payoff from launching the project at t = 0. Note that the sum of
F’s and S’s equilibrium payoffs can be no greater than the payoff to a DM with a value of vF + vS

who has the choice of using the learning technology (λF, cF) or (λS, cS).
The value such a DM obtains from learning at any q > qS is strictly less than the DM’s value

from launching the project immediately. To see this recall that in Proposition 1 we defined the
function

M(q) ≡ λ

c
− 1 + log

(
l(q(v, λ, c)))

)
− (l(q) + log (l(q))) ≥ 0,

which is continuous and decreasing in q. As q(v, λ, c) is implicitly defined by M(q(v, λ, c)) = 0,

implicit differentiation gives that ∂q(v,λ,c)
∂v = −l(q(v, λ, c)) q(v,λ,c)

(v− c
λ)

< 0, and so q(v, λ, c) is decreasing

in v. It follows that launching the project immediately Pareto dominates E. Therefore, t = 0
cannot be in the support of GF.

Since t = 0 is not in the support of F’s strategy, the support of F’s mixed strategy does not
include any t for which qt > qS. Hence, from the same argument used to establish Lemma 1 it
follows that E’ Pareto dominates E. To see that E’ is an equilibrium, note that, in E, submitting
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the project at time zero induces S to launch the project. Hence, F’s payoff in E is weakly greater
than her payoff from launching the project immediately, which, in turn, implies that F’s payoff in
E’ is also weakly greater than her payoff from launching the project immediately. Thus, E’ is an
equilibrium that Pareto dominates E.

By Lemma A.2, we focus on the case where q0 ≤ qS in the rest of this proof.

Lemma A.3. There exists t ≤ ω such that F’s continuation utility at t in E is weakly greater than
her payoff from launching the project immediately.

PROOF:
Assume by way of contradiction that F strictly prefers launching the project to her continuation

utility in E at all t ≤ ω. This implies that qSt ≤ qS for all t ≤ ω, and that ∆(qt) ≥ 0 at all t when
qSt = qS. Moreover, F must use a mixed strategy with a full support on [0, ω]. First, consider the
case where ω is not an atom of GF. By Lemma A.1, there exists tn → ω for which limtn→∞ q

S
tn = qω.

By Bayes’ law qStn ≥ qt. It follows that there exists a subsequence tnk along which qStnk
is decreasing.

For every tnk in the sequence, WNB
tnk

= qtnk v
FPS(qStnk

) and WB
tnk

= vFPS(qStnk
). Hence both WNB

and WB are decreasing in the subsequence. Since WNB is differentiable and hence continuous, it
follows that F’s value function is decreasing around ω, in contradiction to F’s indifference condition.
Next, consider the case where ω is an atom. If there exists a decreasing sequence qStn for tn → ω,

the same argument used above establishes the claim. Otherwise, since ∆(qt) ≥ 0 whenever qSt = qS,
it follows that the value from submitting the project at ω where S’s belief is correct is strictly less
than the value from submitting the project just prior to ω.

Denote by ψ the infimum of the set of t ≤ ω such that F’s continuation utility at t in E is weakly
greater than her utility from launching the project (by Lemma A.3 this set is not empty). If qSt > qS

for some t < ψ, then S will launch the project upon receiving it and so F’s continuation utility will
be at least the utility from launching the project. By the definition of ψ, F’s continuation utility
is less than that, and so it must be that qSt ≤ qS for all t < ψ. This implies that F fabricates
breakthroughs with a positive intensity at any t < ψ. Moreover, if qSt = qS for t < ψ, then it must
be the case that ∆(qt) ≥ 0 as otherwise by submitting the project F could obtain a utility that is
greater than the utility obtained from launching the project.

If ψ = 0, then E’ is an equilibrium. Moreover, by Lemma 1, E’ Pareto dominates E. Hence, for
the rest of the proof we focus on the case where ψ > 0. Note that since we are focusing on the case
where q0 ≤ qS, it follows that qψ < qS.

Lemma A.4. qSt is continuous and increasing at at all times t ∈ [0, ψ) in E.

PROOF:
The proof of this lemma is identical to that of Lemma A.3 with τ∗ replaced by ψ.

Lemma A.5. The project is terminated at ω in E.

PROOF:
Assume by way of contradiction that S learns after receiving the project at ω. By Lemma 1,

F’s continuation utility at ψ in E is weakly less than her continuation utility in E’. Moreover, F’s
continuation payoff at ψ in E’ is weakly less than her payoff from submitting the project to S and
having S best respond to belief qψ. Hence, F’s continuation utility at ψ in E is no greater than
vFqψP

S(qψ).
By the definition of WNB

t and the fact that ∆(qt) > 0 whenever qSt = qS, we have that WNB
t ≥

vFqtP
S(qSt ) for all t ≤ ψ. Since Lemma A.4 implies that q0 < qSt for all t < ψ, it follows that

lim
t↑ψ

WNB
t ≥ vFqψ lim

t↑ψ
PS(qSt ) > vFqψP

S(q0) > vFqψP
S(qψ).
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Hence, F would rather submit the project just prior to ψ than at ψ.
Note that if F would rather launch the project than terminate it at ω (and receive a payoff

of zero), then submitting the project just prior to ω is a profitable deviation regardless of S’s
response. Hence, from Lemma A.5 it follows that ψ < ω. Together with Lemma 1, this implies
that F’s continuation utility at t ≤ ω in E is weakly less than the value of optimal learning for a
DM with a value of vF and a prior of qt. It follows that if qt > qF, S cannot launch the project
immediately upon receiving it, which, in turn, implies that ψ ≥ τ∗.

The arguments used to establish Proposition 3 show that if E is a Pareto-efficient equilibrium,
then the continuation equilibrium at τ∗ must be efficient. Thus, it suffices to show that F taking
over the project at τ∗ is the Pareto-dominant equilibrium among all equilibria where the project is
terminated at ω.

Lemma A.6. Assume that q0 = qF and that F must use a strategy in which she terminates the
project at ω. F taking over the project is the Pareto-dominant equilibrium.

PROOF:
Proposition 1 implies that F taking over the project is an equilibrium. Moreover, note that S

considers launching the project immediately to be inferior to having F take over the project.
The argument used to establish Lemma 1 shows that F’s utility from any equilibrium in which she

terminates the project at ω is weakly less than her utility from learning until ω and then terminating
the project. Similarly, it shows that S’s utility from any equilibrium in which F terminates the
project at ω is weakly less than the maximum between his utility from F learning until ω and then
terminating the project and his utility from launching the project immediately.
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Online Appendix B: Monitoring

In this appendix, we conduct the formal analysis for Section V.B (Monitoring). The description
of the model is provided in the main text.

B1. The Monitor’s Problem

We now discuss S’s optimal behavior when he receives the project. Consider the case where S
acquires information of quality φ > 0. In the event that the breakthrough was indeed fabricated, S
launches the project if the signal’s realization is sN and terminates it if the signal’s realization is sY .
If the project is launched, which occurs with probability 1−φ, S’s expected payoff is qtv

S−(1−qt).
If, on the other hand, the breakthrough was not fabricated, S always obtains the realization sN
and his payoff from launching it is vS since the project is good. Thus, S’s ex-ante expected payoff
from acquiring information of quality φ and following the realization of the signal is given by

(B1) EUS(φ, zt, qt) = (qtv
S − (1− qt))(1− φ)zt + vS(1− zt)− κ(φ).

Since this is a concave problem, its solution is given by the first-order condition

(B2) κ′(φ) = zτ
(
1− qτ − qτvS

)
.

Note that the RHS of (B2) is positive since, by assumption, q < q̂ = 1
1+v . The assumptions that κ

is convex, κ′(0) = 0, and limφ→1k(φ) =∞ imply that at the optimum the FOC holds with equality.
Denote the optimal choice of quality by φ∗(zt, qt).

Since S may decide to terminate the project without scrutiny, strictly positive monitoring is
optimal only if his expected value from optimal monitoring is nonnegative, i.e.,

(B3) EUS(zt, qt) ≡ (1− z)v + (1− φ∗(z, q))z(q(v + 1)− 1)− κ(φ∗(z, q)) ≥ 0.

Since κ ≥ 0 this condition also implies that, conditional on receiving the realization sN , S would
rather launch the project than terminate it.

From equation (B2) and the assumptions that κ is increasing and convex, it follows that, for a
fixed q, φ∗(z, q) is decreasing in z and converges to zero as z does. Hence, for any q < q̂, this
condition holds for a positive z that is sufficiently small. Moreover, for a given q, the LHS of (B3)
is decreasing in z and is strictly negative if z = 1. Hence, there exists a unique z for which (B3)
holds with equality. Denote this critical probability of the breakthrough being fabricated by z(q)
and denote φ(q) ≡ φ∗(z(q), q).

Lemma B.1. φ(q) is decreasing in q and z(q) is increasing in q.

PROOF:
This result follows from the implicit function theorem and the definitions

0 = EUS(z(qt), qt)

0 = κ′(φ(qt))− z(qt)(1− qt(1 + vS)).

B2. The Strategic Interaction

Having analyzed the monitor’s problem, we now revert to analyzing the strategic interaction
between F and S, when S has access to a monitoring technology. For this analysis, we impose the
assumption of large conflict, q̂S > qF.
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First, as in all of the variants considered in this paper, if q0 ≤ qF, then the Pareto-dominant
equilibrium is for F to take over the project. To see this, note that since S cannot learn directly
about the quality of the project, F learning maximizes the utility of both players. Since for such
priors F is willing to learn as a DM, this is the Pareto-dominant equilibrium.

In the rest of this section, we focus on priors such that q0 ∈ (qF, q̂S). If qF < q0 < q̂S, then in any
pure strategy equilibrium the project is terminated. Hence, any equilibrium in which the players
obtain strictly positive expected utility is in mixed strategies. Importantly, in a mixed strategy
equilibrium, F must randomize between fabricating a breakthrough and continuing to lean at every
t such that qt > qF. To see this, note that were S to approve the project with probability one for
such t (which is his unique best response if F does not fabricate breakthroughs), then F would
rather have S launch the project immediately at that point than continue learning, as she does not
derive any direct benefit from S’s monitoring.

Recall that φ(qτ ) is the maximal probability with which S can detect that a breakthrough was
fabricated if he decides to use his monitoring technology optimally. Moreover, since qt decreases
over time, Lemma B.1 implies that this probability increases over time.

For convenience, we restate the main result of Section V.B, namely Proposition 7.

Proposition. There exists some q∗∗ ∈ (qF, q̂S) such that, for any q0 ∈ (qF, q∗∗), the Pareto-
dominant equilibrium is characterized by τ∗∗ < τ∗ such that

1) for all t ≤ τ∗∗, if S receives the project at t, he terminates the project with probability 1− θt
and otherwise monitors F according to φt = φ(qt) (partial-mistrust phase),

2) for all t ∈ (τ∗∗, τ∗), if S receives the project at t, he monitors F according to φt = φ∗t (zt, qt) <
φ(qt) (verification phase),

and F takes over the project at τ∗.

The path by which we establish Proposition 7 is as follows. First, we define a specific equilibrium
in which S’s behavior can be decomposed into at most two phases: an initial partial-mistrust phase
in which he randomizes between terminating the project and maximal scrutiny given belief qt, and
a later verification phase in which he scrutinizes the project (non-maximally) with certainty. In
the former phase, F is incentivized to learn by increasing the probability of scrutinizing the project
as time goes by, and in the later phase, F is incentivized to learn by decreasing the amount of
scrutiny the project receives as time goes by. Finally, we show that if this equilibrium exists, it
Pareto dominates any other equilibrium.

Recall that F must be indifferent between all stopping times τ < τ∗. In this application this
indifference condition (equation (3)) can be written as

λFqτ
[
WNB
τ − θτvF

]
+ cF =

dWNB
τ

dτ
.(B4)

To construct the Pareto-dominant equilibrium, we analyze separately this indifference condition
under the assumption that θt < 1 on some interval (a partial-mistrust phase), and under the
assumption that θt = 1 on some interval (verification phase).

Case 1: θt < 1 on some interval. In this case, S must be indifferent between terminating
the project and scrutinizing F’s submission. Thus, his beliefs about the probability that the
breakthrough was fabricated must equal z(qt). However, as qt changes over time, the probability
of S approving a project submitted with a fabricated breakthrough, conditional on examining it,
is not constant over time. In particular, this probability is given by φ(qt), which is increasing in t
(Lemma B.1). Let P t = 1− φ(qt) denote the probability that the fabrication of the breakthrough
is not detected by S (and hence the project is launched).
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In an interval where θt < 1 it holds that WNB = θtP t(qt(v
F + 1) − 1) and so the differential

equation (B4) becomes

(B4b) cF + λFqtθtv
F(P t − 1) = (qt(v

F + 1) − 1)
d(θtP t)

dt
.

From this representation we can derive the following result.

Lemma B.2. If cF + λFqtθtv
F(P t − 1) > 0 , then θ̇t > 0.

PROOF:
In the mixing region F would rather launch the project than terminate it and so (qt(v

F+1)−1) >
0. Since P t is decreasing in t, it follows that if cF + λFqtθtv

F(P t− 1) > 0, it must be the case that
θ̇t > 0.

Case 2: θt = 1 on some interval. In this case WNB = Pt(qt(v
F + 1) − 1), where Pt is the

probability that a project submitted with a fabricated breakthrough at t is launched, and so the
differential equation (B4) becomes

(B4c) cF + λFqtv
F(Pt − 1) = Ṗt(qt(v

F + 1)− 1).

We construct an equilibrium in which F takes over the project at τ∗. Thus, the boundary condition
for WNB is WNB

τ∗ = qτ∗(v
F+1)−1, which implies that Pτ∗ = 1. Note that this implies that Ṗτ∗ > 0.

Moreover, recall that by assumption cF < vFλF and so from equation (B4c) it follows that once Pt
becomes increasing it remains so. Let t′′ be the infimum of times {s : Ṗt′′ ≥ 0,∀t ≥ s} (note that
t′′ < τ∗), and define q∗∗ = qt′′ .

In equilibrium it must be the case that Pt ≥ P t. Hence, the evolution of Pt derived in case 2
above need not be feasible in equilibrium. To construct an equilibrium, let τ∗∗ denote the unique
t for which Pt = P t, where Pt is the solution to (B4c) with the boundary condition Pτ∗ = 1. Such
a t exists and is unique as Pt is increasing and satisfies Pτ∗ = 1, while P s is decreasing and equals
1 if qs = q̂S.

We construct our equilibrium as follows. On [τ∗∗, τ∗) the probability of the project being approved
after a fabricated breakthrough is given by the solution to equation (B4c) and θτ∗ = 1, note that
by the definition of τ∗∗, this probability is a best response to some belief for S. For t < τ∗∗ the
probability of the project being approved following a fabricated breakthrough is P t, and θt is given
by the solution to equation (B4b) with the boundary condition θτ∗∗ = 1, which is required for
the continuity of WNB at τ∗∗. Since in this range P t is greater than the value of Pt that would

have been obtained from the solution to equation (B4c), it follows that (qt(v
F + 1) − 1)

d(θtP t)
dt >

(qt(v
F + 1)− 1)Ṗt) > 0, and so by Lemma B.2, θ̇t > 0. Hence, our equilibrium exists if τ∗∗ ≤ 0, or

τ∗∗ > 0 and θ0 ≥ 0.
Next, we show that if there exists an alternative equilibrium Ê, then the equilibrium described

above also exists. To see this, recall that since S cannot learn about the project’s quality, F must
mix with a full support on [0, τ∗] and continuation values in [0, τ∗] are given by the differential

equation (B4). The continuation play in Ê generates a continuation value for F, which, in turn,

pins down θ̂τ∗ and P̂τ∗ in the alternative equilibrium. If θ̂τ∗ = P̂τ∗ = 1, then F’s strategy in [0, τ∗]
is identical in the alternative equilibrium and the one we are characterizing. Hence, our equilibrium
exists. If θ̂τ∗ ≤ 1, P̂τ∗ ≤ 1 (with one strict inequality), then the boundary condition for Ê is below

the boundary condition for our equilibrium. Hence, ŴNB
t < WNB

t , for every t ≤ τ∗. In particular,

this implies that θ̂0 ≤ θ0 and P̂0 ≤ P0. Since θ̂0, P̂0 are feasible strategies, our equilibrium also
exists.

Finally, we show that our equilibrium is a Pareto-efficient equilibrium. For F this is immediate.
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F’s equilibrium value is WNB
0 , and since this value is given by an ODE it is increasing in WNB

τ∗ .
Since WNB

τ∗ is increasing in Pτ∗ and θτ∗ , it follows that the WNB
τ∗ is maximized in our equilibrium,

where θτ∗ = Pτ∗ = 1.
For S the argument is different. First, note that in our equilibrium the probability that F

fabricates a breakthrough at t < τ∗ is weakly lower than in any other equilibrium. This is the case,
as the amount of monitoring is increasing in the probability of the breakthrough being fabricated,
and in our equilibrium the amount of monitoring is lower than in any other equilibrium (P is higher).
Prior to τ∗∗ there must be a partial-mistrust phase in both equilibria; thus, in this range F’s strategy
is the same in both equilibria. Thus, the difference between S’s payoff in the alternative equilibrium
and in our equilibrium can be analyzed by determining the impact of reducing the probability that
F submits the project with a fabricated breakthrough at t ∈ (τ∗∗, τ∗) and increasing the probability
that the project is submitted after an authentic breakthrough at some s ∈ (t, ω) or terminated at
ω. Note that S’s value from receiving a project following a fabricated breakthrough is strictly
negative; his utility from receiving the project after an authentic breakthrough, and monitoring it
for any plausible amount of time, is positive; and his utility from the project being terminated at
ω is zero. Hence, S also prefers our equilibrium to any alternative equilibrium.




