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Online Appendix For:
“Monopolistic Competition and Efficiency under

Firm Heterogeneity and Non-Additive
Preferences”

Kyle Bagwell∗ Seung Hoon Lee†

This Online Appendix contains remaining proofs for the extensions explored in
Section IV.

Appendix F: Comparative statics with respect to η

We consider here the comparative statics of the first best and market equilib-
rium solutions to changes in η under our maintained parameter restrictions which
ensure that selection occurs in both solutions.

We begin with the first best solution. Referring to (17)-(19), we see that the
first best cost cutoff and multiplier, cFB

D and λFB, respectively, are determined
as the solutions to the following system:

𭟋1(cD, λ; η) ≡
1

(k + 1)fE
− γ(k + 1)(cM )k

η

(α− λcD)

λ(cD)k+1
= 0

𭟋2(cD, λ; η) ≡ (cD)
k+2 − γ(k + 1)(k + 2)fE(cM )k

λ
= 0.

In Appendix B, we establish that this system has a unique solution satisfying
cFB
D ∈ (0, cM ) and λFB > 0. Applying the implicit function theorem to this
system, we obtain that

∂cFB
D

∂η
= −

∂𭟋1

∂η
∂𭟋2

∂λ

|J |
and

∂λFB

∂η
=

∂𭟋2

∂cD
∂𭟋1

∂η

|J |
,

where |J | ≡ ∂𭟋1

∂cD
∂𭟋2

∂λ − ∂𭟋1

∂λ
∂𭟋2

∂cD
and all terms are evaluated at cD = cFB

D and

λ = λFB.
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Calculations reveal the following relationships:

∂𭟋1

∂η
=

(k + 1)γ(cM )k

η2
(α− λFBcFB

D )

λFB(cFB
D )k+1

> 0

∂𭟋1

∂cD
=

(k + 1)γ(cM )k

η

1

λFB

{
α(k + 1)− λFBkcFB

D

(cFB
D )k+2

}
> 0

∂𭟋1

∂λ
=

(k + 1)γ(cM )k

η

α

(λFB)2(cFB
D )k+1

> 0,

where the first inequality follows since 𭟋1(cFB
D , λFB; η) = 0 ensures α−λFBcFB

D >
0. This inequality likewise ensures that the second inequality follows, since the
bracketed expression is then positive when k = 1 and increasing in k. The third
inequality is immediate. Calculations similarly reveal that

∂𭟋2

∂η
= 0

∂𭟋2

∂cD
= (k + 2)(cFB

D )k+1 > 0

∂𭟋2

∂λ
=

(k + 1)(k + 2)γfE(cM )k

(λFB)2
> 0,

where all inequalities follow immediately.
Further calculations reveal that the Jacobian determinant for the equation sys-

tem may be written as

|J | ≡ ∂𭟋1

∂cD

∂𭟋2

∂λ
− ∂𭟋1

∂λ

∂𭟋2

∂cD

= −(k + 1)2(k + 2)fEγ
2(cM )2k

η(λFB)3(cFB
D )k+2

(
α+ λFBkcFB

D

)
< 0,

where the equality follows after using λFB(cFB
D )k+2 = γ(k+ 1)(k+ 2)fE(cM )k as

ensured by 𭟋2(cFB
D , λFB; η) = 0.

Using the results derived above, we may now conclude that

∂cFB
D

∂η
= −

∂𭟋1

∂η
∂𭟋2

∂λ

|J |
> 0 and

∂λFB

∂η
=

∂𭟋2

∂cD
∂𭟋1

∂η

|J |
< 0,

where again all terms are evaluated at cD = cFB
D and λ = λFB.

As discussed in the text, since NFB
E is independent of η, it now follows that

the number of available varieties NFB = G(cFB
D )NFB

E rises as η increases. We
consider next the impact of η on the aggregate quantity in the first best solution,
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QFB. We note that

QFB = NFB
E

∫ cFB
D

0

λFB

γ
(cFB

D − c)dG(c)

=
1

fE(k + 1)

(cM )−k(cFB
D )k+1λFB

γ(k + 1)
=

(k + 2)

(k + 1)cFB
D

,

where the second equality uses the Pareto distribution (1) and the third equality
uses λFB = γ(k+1)(k+2)fE(cM )k(cFB

D )−(k+2) as ensured by𭟋2(cFB
D , λFB; η) = 0.

Since as established above cFB
D rises as η increases, it follows that QFB falls as η

increases.

Finally, we may evaluate the impact of η on the first best quantity allocation

function qFB(c). We know from (20) that qFB(c) = λFB

γ (cFB
D − c), ∀c ∈ [0, cFB

D ],

where qFB(c) = 0,∀c ∈ [cFB
D , cM ]. Using the results derived above, we find for

c ∈ [0, cFB
D ] that

∂qFB(c)

∂η
=

1

γ

∂𭟋1

∂η

|J |

{
−γ(k + 1)(k + 2)fE(cM )k

λFB
+ (cFB

D − c)(k + 2)(cFB
D )k+1

}
.

Using ∂𭟋1

∂η > 0 > |J | when all terms are evaluated at cD = cFB
D and λ = λFB,

we find that (i) ∂qFB(c)
∂η > 0 when c = cFB

D , (ii) ∂qFB(c)
∂η < 0 when c = 0 and

(iii) ∂2qFB(c)
∂η∂c > 0 > ∂qFB(c)

∂c for c ∈ (0, cFB
D ). These findings indicate that the

quantity allocation function qFB(c) falls less quickly with c as η increases, with
a threshold cost cFB

T ∈ (0, cFB
D ) existing such that the quantity produced falls

(rises) (is unchanged) for c < (>)(=) cFB
T .

Of the three itemized properties just listed, properties (i) and (iii) are immedi-
ate. To confirm property (ii), we observe that

∂qFB(c)

∂η
|c=0 =

1

γ

∂𭟋1

∂η

|J |

{
−γ(k + 1)(k + 2)fE(cM )k

λFB
+ (k + 2)(cFB

D )k+2

}
=

∂𭟋1

∂η

|J |

{
(k + 1)2(k + 2)fE(cM )k

λFB

}
< 0,

where the second equality follows after using (cFB
D )k+2 − γ(k+1)(k+2)fE(cM )k

λFB as

ensured by 𭟋2(cFB
D , λFB; η) = 0.

The market equilibrium solution can be analyzed similarly. Referring to (43)-
(45), we see that the market equilibrium cost cutoff and multiplier, cmkt

D and λmkt,
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respectively, are determined as the solutions to the following system:

M1(cD, λ; η) ≡
1

(k + 1)fE
− 2γ(k + 1)(cM )k

η

(α− λcD)

λ(cD)k+1
= 0

M2(cD, λ; η) ≡ (cD)
k+2 − 2γ(k + 1)(k + 2)fE(cM )k

λ
= 0.

In Appendix E, we establish that this system has a unique solution satisfying
cmkt
D ∈ (0, cM ) and λmkt > 0. Notice that the equation system for the market
equilibrium solution takes exactly the same form as that analyzed above for the
first best solution, except that each “γ” in the first best equation system is re-
placed by “2γ” in the market equilibrium equation system. Since the magnitute
of γ plays no role in the comparative statics analysis of the first best equation
system, we conclude that the comparative statics results extend in the obvious
way to the market equilibrium solution.

Appendix G: Bounded Pareto Distribution

We consider here the extension of the model to a setting in which the distri-
bution function takes the form of a bounded Pareto distribution. We derive the
respective equation systems for the first best and market equilibrium solutions and
explore the efficiency properties of the latter. In this Online Appendix section,
we use the same notation as in the paper for the first best and market equilib-
rium solution variables. It is understood, however, that variables take different
values here, due to the different distribution assumption. We provide additional
clarification where needed.

First best solution. — For our analysis of the first best solution, we follow
the steps in the paper. As confirmed in Appendix A and reported in Section
I of the paper, we can use variational techniques and standard calculus tools
to characterize the optimality conditions for our candidate solution in terms of
the Euler equation for q(c) as given by (8), the first order condition for NE as
given by (9), the conjectured boundary condition q(cD) = 0 as given by (10), and
the resource constraint as given by (6). These conditions are stated for general
distribution functions but must be modified to reflect the new support, [cL, cU ].
As in the paper, we initially impose the assumption that we have found a

solution (q∗(c), N∗
E) to the planner’s restricted problem such that the associated

triplet (q∗(c), c∗D, N
∗
E) and λ∗ together satisfy N∗

E ∈ (0, 1/fE), c
∗
D ∈ (cL, cM ), λ∗ ≥

0, the optimality conditions (8)-(10) and the resouce constraint (6), again with
the modified support. Following the arguments in the paper, it then follows from
(12) that q∗(c) = λ∗

γ (c∗D − c), ∀c ∈ [cL, c
∗
D] and that λ∗ > 0.

To further characterize this solution, we now assume that the distribution func-
tion is a uniform distribution over the interval [cL, cU ], where cU > cL > 0. Thus,
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we have that

(B1) G(c) =
c− cL
cU − cL

for c ∈ [cL, cU ]. The uniform distribution with cL > 0 corresponds to a bounded
Pareto distribution with k = 1. It is convenient to note that

c∗ ≡
∫ c∗D
cL

cdG(c)

G(c∗D)
=

c∗D + cL
2

and ĉ∗ ≡
∫ c∗D
cL

c2dG(c)

G(c∗D)
=

(c∗D)
2 + c∗DcL + (cL)

2

3
.

With modifications for the new support, we now use (12) and the uniform
distribution (B1) to rewrite the resource constraint (6) and the Euler equation
(8), respectively, as

(B2) N∗
E

[
λ∗

γ

(c∗D − cL)
2(2cL + c∗D)

6(cU − cL)
+ fE

]
= 1

(B3) N∗
E =

2γ(cU − cL)

η

(α− λ∗c∗D)

λ∗(c∗D − cL)2
.

Similarly, using (12) and the uniform distribution (B1) along with the rewritten
Euler equation (B3), we can rewrite the optimality condition (9) for the number
of entrants as

(B4) c∗D − cL =

[
6fE(cU − cL)γ

λ∗

] 1
3

.

Following the steps taken in the paper, we next substitute (B4) into (B2).
Specifically, we isolate (c∗D − cL)

3 from (B4), multiply the numerator and de-
nominator of the fraction in (B2) by (c∗D − cL), and substitute the solution for
(c∗D − cL)

3 from (B4) into (B2). We thereby obtain

(B5) fEN
∗
E [

cL + 2c∗D
c∗D − cL

] = 1.

We note that (c∗D, N
∗
E , λ

∗) are determined by the equation system (B3), (B4) and

(B5) with q∗(c) then given by q∗(c) = max{λ∗

γ (c∗D − c), 0}, ∀c ∈ [cL, cU ].

As in the paper, the candidate solution (qFB(c), NFB
E ) and associated multiplier

λFB for the planner’s problem can now be constructed from (c∗D, N
∗
E , λ

∗) and
q∗(c) as just determined by using the translation under which qFB(c) = q∗(c) for
c ∈ [cL, c

∗
D] and qFB(c) = 0 for c ∈ (c∗D, cU ], N

FB
E = N∗

E , and λFB = λ∗. We again
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define cFB
D ≡ c∗D. From here, we may follow similar arguments to those given in

Appendix B. Specifically, under the parameter restrictions given in the paper
(which correspond to the current setting when k = 1, cL = 0 and cM = cU ), we
can establish that there exists an upper bound c∗L > 0 such that for all cL ∈ (0, c∗L)
the above system of equations has a unique solution satisfying cFB

D ∈ (cL, cU ).
We can then uniquely determine NFB

E ∈ (0, 1/fE) by using (B5), with λFB > 0
thus uniquely determined by (B4). From here, qFB(c) is uniquely determined as

qFB(c) = max{λFB

γ (cFB
D − c), 0}, ∀c ∈ [cL, cU ]. Finally, we may argue as in the

paper to confirm that the candidate solution solves the planner’s problem.

Market equilibrium solution. — The market equilibrium solution under the
uniform distribution (B1) may be determined using the same steps as in Section
II of the paper. Here, we identify novel expressions and then state the associated
equation system that determines the market equilibrium solution for the new
setting.
The consumer’s problem is unaltered. For given pmax, the firm’s problem is also

unaltered. Assuming for now that cU > cD, we find that c and p now take the
following respective forms:

c =
cD + cL

2
and p =

3cD + cL
4

.

The new expression for p in turn implies that (34) now takes the following form:

N =
4γ

η

(α− λcD)

λ(cD − cL)
.

Using NE = N
G(cD) , we find that (37) now takes the following form:

(B6) NE =
4γ (cU − cL)

η

(α− λcD)

λ (cD − cL)
2 .

Labor market clearing again ensures that the resource constraint is binding and
given by (38). We simplify further by using (32) for c ∈ [cL, p

max], pmax = cD, (B6)
and the uniform distribution (B1). Proceeding thus, we find that the resource
constraint (38) can be written as

(B7)
3η

γ · ϕ̃
=

(α− λcD)

λ (cD − cL)
2

(
(2cL + cD) (cD − cL)

2 λ

γϕ̃
+ 1

)
,

where ϕ̃ ≡ 12fE(cU − cL).
Finally, the Free Entry (FE) condition is again defined by (40). We represent
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this condition equivalently as

(B8) cD − cL = (
γϕ̃

λ
)
1
3 ,

where we use (32) and (33) for c ∈ [cL, p
max], set pmax = cD and use the uniform

distribution (B1).

Following the steps taken in the paper, we next substitute (B8) into (B7).
Specifically, we isolate (cD − cL)

3 from (B8), multiply the numerator and denom-
inator of the bracketed fraction in (B7) by (cD − cL), and substitute the solution
for (cD − cL)

3 from (B8) into (B7). We thereby obtain

(B9) fENE [
cL + 2cD
cD − cL

] = 1.

Following the paper, given q(c) = λ (cD − c) /(2γ) for all c ∈ [cL, cD] and a
triplet (cD, NE , λ) solving (B6), (B8) and (B9), the market equilibrium solu-
tion (qmkt(c), Nmkt

E ) and associated multiplier λmkt can be constructed by us-
ing the translation under which cmkt

D = cD, qmkt(c) = q(c) for c ∈ [cL, c
mkt
D ]

and qmkt(c) = 0 for c > cmkt
D , Nmkt

E = NE , and λmkt = λ. From here, we
may follow similar arguments to those given in Appendix E. Specifically, under
the parameter restrictions given in the paper (which correspond to the current
setting when k = 1, cL = 0 and cM = cU ), we can establish that there ex-
ists an upper bound cmkt

L > 0 such that for all cL ∈ (0, cmkt
L ) the above sys-

tem of equations indeed has a unique solution satisfying cmkt
D ∈ (cL, cU ). We

can then uniquely determine Nmkt
E ∈ (0, 1/fE) by using (B9), with λmkt > 0

thus uniquely determined by (B8). From here, qmkt(c) is uniquely determined as

qmkt(c) = max{λFB

γ (cFB
D − c), 0},∀c ∈ [cL, cU ].

Comparison. — Having established the existence of the respective solutions, we
now show that cmkt

D > cFB
D and Nmkt

E > NFB
E . To do this, we extend (A5) and

(A43) from Appendices B and E, respectively, to the current setting and then
compare the resulting expressions.

For the first best setting, we solve for λFB from (B4) and for NFB
E from (B5),

where we impose the translation of the “∗” solutions to the “FB” solutions as
described above. We then plug these solutions into (B3), obtaining that

(B10)
3η

2cFB
D + cL

+
6cFB

D γfE(cU − cL)

(cFB
D − cL)3

= α.

Similarly, for the market setting, we solve for λmkt from (B8) where ϕ̃ ≡ 12fE(cU−
cL) and for Nmkt

E from (B9). We then plug these solutions into (B6), obtaining
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that

(B11)
3η

2cmkt
D + cL

+
12cmkt

D γfE(cU − cL)

(cmkt
D − cL)3

= α.

Under our parameter restrictions, we establish above that (B10) has a unique
solution satisfying cFB

D ∈ (cL, cU ) and likewise that (B11) has a unique solution
satisfying cmkt

D ∈ (cL, cU ). The LHS’s of these equations are also strictly de-
creasing in cFB

D and cmkt
D , respectively, over the (cL, cU ) domain. Comparing the

LHS’s, it is now straightforward to see that cmkt
D > cFB

D . Referring to (B5) and
(B9), we may now conclude that Nmkt

E > NFB
E . Notice that this conclusion would

not follow if cL = 0.

Appendix H: Market Size

We consider here the extension of the model to the L-economy setting in which
there are L > 0 consumers. We derive the equation system for the market equi-
librium solution as presented in Section IV.D of the paper, and we confirm that
the cost cutoff falls while consumer welfare rises with market size. We also discuss
other comparative statics results. In this Online Appendix section, we use the
same notation as in the paper for certain functions used at intermediate steps.
The functions are defined more generally here, due to the relaxation of the as-
sumption that L = 1, and the functions are explicitly defined so that the meaning
is clear from context.

Market equilibrium solution. — The market equilibrium solution for the L-
economy may be determined using the same steps as in Section II of the paper.
Here, we identify novel expressions and then state the associated equation system
that determines the market equilibrium solution for the L-economy setting.
The consumer’s problem is unaltered. For given pmax as defined in (30), the

demand of a variety for an individual consumer takes the form (λ/γ)(pmax−p) so
that the (aggregate) demand facing a firm is (Lλ/γ)(pmax − p). The (aggregate)
inverse demand function that confronts a firm is thus pmax − γ

λ
q
L . A profit-

maximizing firm with cost c thus produces

(B12) q(c) = λL(pmax − c)/(2γ)

units in aggregate. The induced price is again p(c) = [pmax + c]/2, and the firm
enjoys the aggregate profit π(c) = λL(pmax − c)2/(4γ).
With π(c) thus defined, the ZCP condition is again defined by π(cD) = 0 where

pmax = cD. For a given value of cD, the expressions for c and p are unaltered
from those given in Section II of the paper. Following the same steps, we can
confirm that (34), (35) and (37) continue to hold, where N, cD and NE again
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represent the number of varieties, the cost cutoff, and the number of entrants.
For convenience, we reproduce (37) here:

(B13) NE =
2 (k + 1) γ (cM )k

η

(α− λcD)

λ (cD)
k+1

For the L-economy, the resource constraint (38) takes the following form:

NE

(∫ cD

0
c · q (c) dG (c) + fE

)
= L,

where we recall from (B12) the (aggregate) quantity allocation function q(c) now
depends on L. Following the steps taken in the paper, we may rewrite the resource
constraint. The corresponding expression (39) now takes the following form:

(B14)
η (2 + k)

γ · ϕ/L
=

(α− λcD)

λ (cD)
k+1

(
(cD)

k+2 kλ

γ · ϕ/L
+ 1

)
,

where as before ϕ = 2 (k + 1) (k + 2) fE (cM )k.

Finally, the FE condition for a firm is again represented by (40), where we recall
again from (B12) that the quantity allocation function q(c) now depends on L.
Using as well p(c) = [pmax + c]/2, the Pareto distribution (1) and pmax = cD, we
may rewrite (40) with the resulting expression now taking the following form:

(B15) cD =

[
2γ(k + 1)(k + 2)fE(cM )k

λL

] 1
k+2

.

Following the steps in the paper, we next solve the FE condition (B15) for

λ · (cD)k+2 and insert that solution into the resource constraint (B14). We then

solve the resulting expression for (α− λcD) /[λ (cD)
k+1] and plug this solution into

(B13). Following these steps, we thus find that (42) extends to the L-economy as

(B16) NE =
L

(k + 1)fE
.

We now summarize our findings regarding the market equilibrium solution.
Given q(c) = λL(cD − c)/(2γ) for all c ∈ [0, cD] and a triplet (cD, NE , λ) solv-
ing (B13), (B15) and (B16), the market equilibrium solution for the L-economy
(qmktL(c), NmktL

E ) and associated multiplier λmktL can be constructed by using
the translation under which cmktL

D = cD, q
mktL(c) = q(c) for c ∈ [0, cmktL

D ] and
qmktL(c) = 0 for c > cmktL

D , NmktL
E = NE = L/[(k + 1)fE ], and λmktL = λ.

We thus conclude that the market equilibrium solution (qmktL(c), NmktL
E ) and
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associated multiplier λmktL are determined by the following system:

(B17) NmktL
E =

2 (k + 1) γ (cM )k

η

(
α− λmktLcmktL

D

)
λmktL

(
cmktL
D

)k+1

(B18) cmktL
D =

[
2γ(k + 1)(k + 2)fEL (cM )k

λmktL

] 1
k+2

(B19) NmktL
E =

1

(k + 1)fEL

(B20)
qmktL(c)

L
= max{λ

mktL

2γ
(cmktL

D − c), 0},∀c ∈ [0, cM ],

which matches exactly the equation system provided in Section IV.D of the paper.

As noted in Section IV.D of the paper, (B17)-(B19) determine (NmktL
E , cmktL

D , λmktL)
with the quantity allocation function then determined by (B20). Comparing this
system with the previous (L = 1) system (43)-(46), we see that the only change in

the first three equations is that fE is now replaced by fE
L .We may likewise directly

recover the per-capita consumption for the L-economy, qmktL(c)/L, from qmkt(c)

by replacing fE with fE
L in (43)-(46). As discussed in Section IV.D of the paper,

our maintained parameter restriction is more more easily satisfied when L > 1
than when L = 1, since fE

L falls as L rises. Our previously derived results about
the existence and uniqueness of the market equilibrium solutions thus carry over
to the L-economy setting. In particular, following the arguments in Appendix E,
cmktL
D ∈ (0, cM ) and λFB > 0 are uniquely determined, with NmktL

E ∈ (0, L/fE)
uniquely determined by (B19) and qmktL(c) then uniquely given by (B20).

Welfare analysis. — We first establish that the cost cutoff falls with L. We
then show that welfare rises with L.

To establish that cmktL
D falls with L, we use (B17) and (B19) to obtain

(B21)

(
α− λmktLcmktL

D

)
λmktL

(
cmktL
D

)k+1
=

Lη

2γ(k + 1)2fE (cM )k
.
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Using (B18), we also have that

(B22) λmktL(cmktL
D )k+2 =

2γ(k + 1)(k + 2)fE(cM )k

L
.

Equations (B21) and (B22) determine λmktL and cmktL
D .

Rearranging (B21), we obtain

λmktLcmktL
D =

α

1 + (cmktL
D )k Lη

2γ(k+1)2fE(cM )k

.

Plugging this expression into (B22) and simplifying, we obtain an expression that
determines cmktL

D :

(B23) (cmktL
D )k[cmktL

D − η(k + 2)

α(k + 1)
] =

2(k + 1)(k + 2)(cM )kfEγ

αL
.

Viewed as a function of cmktL
D , the LHS of (B23) is negative for cmktL

D ∈
(0, η(k+2)

α(k+1)), zero for cmktL
D ∈ {0, η(k+2)

α(k+1)} and positive for cmktL
D > η(k+2)

α(k+1) . As

expected, cmktL
D > 0 is thus confirmed, since the LHS increases without bound

as cmktL
D > η(k+2)

α(k+1) rises and the RHS of (B23) is positive. Further, given our

restriction that cM > η(k+2)
α(k+1) , we may also confirm as expected that cmktL

D < cM
when fE/L is sufficiently small (as the RHS approaches zero as fE/L approaches
zero). We may now confirm from (B22) that λmktL > 0 follows as well.

Taking the derivative of the LHS, we can also confirm that the LHS is minimized

when cmktL
D = kη(k+2)

α(k+1)2
, with the LHS falling (rising) for cmktL

D < (>) kη(k+2)
α(k+1)2

.

Since kη(k+2)
α(k+1)2

< η(k+2)
α(k+1) , we conclude that the LHS is positive and increasing for

cmktL
D > η(k+2)

α(k+1) . Notice finally that the LHS is independent of L while the RHS

falls with L. Together, these results establish the following result:

(B24)
dcmktL

D

dL
< 0.

Thus, a larger market size leads to a lower cost cutoff in the L-economy model.

We may argue similarly to establish how cmktL
D responds to changes in η and α,

respectively. As η increases, the LHS of (B23) falls while the RHS is unchanged.
We thus conclude that cmktL

D rises as η increases. An increase in α increases the
LHS and lowers the RHS of (B23). These effects both lead to a lower value for
cmktL
D .

Finally, we can assess the impact of an increase in η on dcmktL
D /dL. For this

purpose, it is useful to provide an explicit expression for dcmktL
D /dL. Using (B23),
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we find that
dcmktL

D

dL
=

−2(k + 2)(cM )kfEγ

αL2(cmktL
D )k−1[cmktL

D − kη(k+2)
α(k+1)2

]
< 0,

where the inequality follows since cmktL
D > η(k+2)

α(k+1) >
kη(k+2)
α(k+1)2

. Using this finding,

we obtain that

d

dη

dcmktL
D

dL
=

2(k + 2)3(cM )kfEγkη

α3L2(k + 1)4(cmktL
D )k−1[cmktL

D − kη(k+2)
α(k+1)2

]3
> 0.

Thus, the reduction in cmktL
D that is induced by an increase in market size L

as reported in (B24) is weakened as η increases. As discussed in the paper,
the comparative statics results provided in this and the preceding paragraphs
for changes in η and α are not present in the original MO model. These novel
relationships emerge in the one-sector model due to the impact of η and α on the
endogenous marginal utility of income λmktL.

We turn next to welfare analysis. To this end, we represent the welfare function
when evaluated at the market equilibrium solution for the L-economy. Using
(B12), pmax = cmktL

D , the Pareto distribution (1) and (B17), we find that

NmktL
E

∫ cM

0

q(c)

L
dG(c) = NmktL

E

∫ cmktL
D

0

q(c)

L
dG(c) =

α− λmktLcmktL
D

η

NmktL
E

∫ cM

0
(
q(c)

L
)2dG(c) = NmktL

E

∫ cmktL
D

0
(
q(c)

L
)2dG(c) =

(α− λmktLcmktL
D )λmktLcmktL

D

η(2 + k)γ
.

At the market equilibrium solution, the welfare function for an individual con-
sumer takes the form

UmktL = NmktL
E

[
α

∫ cM

0

q(c)

L
dG(c)− γ

2

∫ cM

0
(
q(c)

L
)2dG(c)− η

2
NmktL

E

(∫ cM

0

q(c)

L
dG(c)

)2
]
.

Substituting, we obtain that consumer welfare at the market equilibrium solution
is given as

(B25) UmktL =
(α− λmktLcmktL

D )

2η
(α+

k + 1

k + 2
λmktLcmktL

D )

as reported in Section IV.D of the paper. As noted in the paper, Bagwell and Lee
(2021) derive this representation when L = 1 for general values of NE .

Welfare at the market equilibrium solution depends on market size through
λmktLcmktL

D . We thus now explore how λmktLcmktL
D varies with L. Multiplying
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(B21) and (B22), we obtain(
α− λmktLcmktL

D

)
cmktL
D =

η(k + 2)

k + 1
.

Rearranging, we find

λmktLcmktL
D = α− η(k + 2)

(k + 1)cmktL
D

.

Differentiating this expression with respect to L, we obtain

(B26)
d(λmktLcmktL

D )

dL
=

η(k + 2)

(k + 1)(cmktL
D )2

dcmktL
D

dL
< 0,

where the inequality follows from (B24).

Referring to (B25), we find that

dUmktL

dL
= −

α+ 2(k + 1)λmktLcmktL
D

2(2 + k)η

d(λmktLcmktL
D )

dL
> 0,

where the inequality follows from (B26). Thus, and as reported in Section IV.D of
the paper, a larger market generates greater consumer welfare. As in the original
MO model with an outside good and as reported in Section IV.D of the paper,
this welfare gain reflects the lower average price and greater product variety that
are attributable to a lower cost cutoff. We confirm these and other comparative
statics next.

Comparative statics. — We now briefly report comparative statics results for
other economic measures of interest. We relate these findings to those reported
by Melitz and Ottaviano (2008) for the original MO model with an outside good.

Using pmax = cmktL
D at the market equilibrium, the profit-maximizing price for

a firm with cost c is represented as p(c) = [cmktL
D + c]/2. Given (B24), it follows

immediately that active firms set lower prices in larger markets. Likewise, the
markup for an active firm with cost c is lower in larger markets, whether we
measure the markup as p(c)/c, p(c)− c or (p(c)− c)/c.

As in Section II, we have that cmktL ≡ E(c|c ≤ cmktL
D ) =

(
k

k+1

)
cmktL
D and

pmktL ≡ E(p(c)|c ≤ cmktL
D ) =

(
cmktL
D +cmktL

2

)
=
(

2k+1
2(k+1)

)
cmktL
D in the L-economy

setting. If we follow Melitz and Ottaviano (2008) and define the markup as the
difference between price and cost, then we find that µmktL ≡ pmktL − cmktL =
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1

2(k+1)

)
cmktL
D . Given (B24), it thus follows immediately that

dcmktL

dL
=

(
k

k + 1

)
dcmktL

D

dL
< 0

dpmktL

dL
=

(
2k + 1

2(k + 1)

)
dcmktL

D

dL
< 0

dµmktL

dL
=

(
1

2(k + 1)

)
dcmktL

D

dL
< 0.

Hence, as in the original MO model, the conditional expected cost, price and
markup are all lower in larger markets. These results match those reported by

Melitz and Ottaviano (2008, p. 301). (While the exact expression for
dcmktL

D
dL

depends on the model, the sign of the comparative statics depends only on the

sign of
dcmktL

D
dL which is common across the two models.) We note that if the

markup were instead defined as the price-cost ratio, then the conditional expected
markup would be independent of market size.

We can also show that the number of consumed varieties in the market equi-
librium solution is higher in larger markets. To see this, note that the number
of consumed varieties, NmktL, satisfies NmktL = G(cmktL

D )NmktL
E . Thus, using

(1) and (B19), we find that NmktL = (
cmktL
D
cM

)k L
(k+1)fE

. Referring to (B24), it thus

follows that NmktL = (
cmktL
D
cM

)k L
(k+1)fE

= 2(k+2)γ

α[cmktL
D − η(k+2)

α(k+1)
]
. Hence, we have that

dNmktL

dL
= − 2(k + 2)γ

α[cmktL
D − η(k+2)

α(k+1) ]
2

dcmktL
D

dL
> 0,

which establishes the desired conclusion.

We likewise calculate conditional expected output as qmktL ≡ E(q(c)|c ≤
cmktL
D ) = ( L

2γ(k+1))(λ
mktL
D cmktL

D ), where we use (B12), (1) and pmax = cmktL
D . Using

(B22), we find that qmktL = (k + 2)(cM )kfE(c
mktL
D )−(k+1). Similarly, we express

conditional expected sales as rmktL ≡ E(p(c)q(c)|c ≤ cmktL
D ) = ( L

2γ(k+2))(λ
mktL
D (cmktL

D )2).

Using (B22), we find that rmktL = (k+1)(cM )kfE(c
mktL
D )−k. Finally, we write con-

ditional average profit as πmktL ≡ E(π(c)|c ≤ cmktL
D ) = ( L

2γ(k+1)(k+2))(λ
mktL
D (cmktL

D )2).

Using (B22), we find that πmktL = (cM )kfE(c
mktL
D )−k. The final expressions for

qmktL, rmktL and πmktL take the same form as in Melitz and Ottaviano (2008,
p. 301), although cmktL

D itself differs across the two models. Nevertheless, since
cmktL
D falls with L in both model settings, we have the same comparative statics
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results:

dqmktL

dL
= −(k + 1)(k + 2)(cM )kfE(c

mktL
D )−(k+2)dc

mktL
D

dL
> 0

drmktL

dL
= −k(k + 1)(cM )kfE(c

mktL
D )−(k+1)dc

mktL
D

dL
> 0

dπmktL

dL
= −k(cM )kfE(c

mktL
D )−(k+1)dc

mktL
D

dL
> 0.

Hence, as in the original MO model, the conditional expected output, sales and
profit are all higher in larger markets. We also observe that, as in the original
MO model, average industry profitability πmktL/rmktL does not vary with market
size:

d(πmktL/rmktL)

dL
= 0.

Finally, we can also explore how the conditional variance of economic measures
responds to changes in market size. In the market equilibrium solution for the
L-economy, the variance of cost, conditional on a firm being active, is

σ2
cmktL =

∫ cmktL
D

0 (c− cmktL)2dG(c)

G(cmktL
D )

=
k(cmktL

D )2

(k + 1)2(k + 2)
,

where we use the Pareto distribution (1) and our finding above that cmktL =(
k

k+1

)
cmktL
D . Likewise, using the Pareto distribution (1), we calculate the condi-

tional variance of price and markup (defined as the price-cost ratio) as σ2
pmktL ≡

k(cmktL
D )2/[4(k + 1)2(k + 2)] = σ2

µmktL , where we use our findings above that

pmktL =
(

2k+1
2(k+1)

)
cmktL
D and µmktL =

(
1

2(k+1)

)
cmktL
D , respectively.

Given (B24), it thus follows immediately that

dσ2
cmktL

dL
=

(
2kcmktL

D

(k + 1)2(k + 2)

)
dcmktL

D

dL
< 0

dσ2
pmktL

dL
=

(
kcmktL

D

2(k + 1)2(k + 2)

)
dcmktL

D

dL
< 0

dσ2
µmktL

dL
=

(
kcmktL

D

2(k + 1)2(k + 2)

)
dcmktL

D

dL
< 0.

Thus, as in the original MO model, the conditional variance of cost, price and
markup are all lower in larger markets. These results match those reported by
Melitz and Ottaviano (2008, p. 312). (As noted previously, while the exact

expression for
dcmktL

D
dL depends on the model, the sign of the comparative statics
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depends only on the sign of
dcmktL

D
dL which is common across the two models.)

Finally, we can similarly calculate the conditional variance of output and sales as

σ2
qmktL = k(k+2)

(
(cM )kfE

)2
(cmktL

D )−2(k+1) and σ2
rmktL = k

(
(k + 1)(cM )kfE

)2
(cmktL

D )−2k/(k+

4). These expressions for the one-sector model do not take the same form as in
the MO model with an outside good, as may be verified by comparison with the
expressions in Melitz and Ottaviano (2008, p. 301). Nevertheless, since cmktL

D falls
with L in both model settings, the sign of the comparative statics are common
across the two model settings. Specifically, we find that

dσ2
qmktL

dL
= −2(k + 1)k(k + 2)

(
(cM )kfE

)2
(cmktL

D )−2k−3dc
mktL
D

dL
> 0

dσ2
rmktL

dL
=

−2k2
(
(k + 1)(cM )kfE

)2
(cmktL

D )−2k−1

k + 4

dcmktL
D

dL
> 0

Thus, as in the original MO model, the conditional variance of output and sales
are both greater in larger markets.

Appendix I: Short Run Comparison

We consider here a short run version of the model in which NE ∈ (0, 1/fE) is
fixed. We compare the second best and market solutions when NE is fixed at any
level that is sufficiently high so that selection (cD < cM ) occurs in both solutions.

Second best solution. — The second best solution for this setting is already
characterized in Proposition 1 of the paper, which is proved in Appendix C. To
facilitate comparison with the short run market solution, we reproduce a portion
of this proof here.

As Proposition 1 states, for NE > ÑE , the planner’s fixed-NE problem is solved
by q̂(c) with cost cutoff value ĉD ∈ (0, cM ) and associated multiplier λ̂ > 0,

where (q̂, ĉD, λ̂) satisfies the resource constraint (6), the Euler condition (8) and

q̂(c) = max{ λ̂
γ (ĉD − c), 0} for all c ∈ [0, cM ]. As also discusssed below, the proof

shows further that there exists ÑE ∈ (0, 1/fE) such that ĉD < cM if and only if

NE > ÑE .

To confirm that λ̂ > 0 and ĉD ∈ (0, cM ), we note in Appendix C that ĉD > 0

follows from the resource constraint (6). To establish that λ̂ > 0 and ĉD < cM , we
follow the steps used to derive (13) and (14) and represent the resource constraint
and Euler condition, respectively, as

(B27) NE

[
(ĉD)

k+2(cM )−kkλ̂

(k + 1)(k + 2)γ
+ fE

]
= 1
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(B28) NE =
γ(k + 1)(cM )k

η

(α− λ̂ĉD)

λ̂(ĉD)k+1
.

We may use (B27) and (B28) to solve for λ̂ and ĉD.

Solving (B27) for λ̂, we obtain

(B29) λ̂ =
1−NEfE

NE

γ(k + 1)(k + 2)(cM )k

k(ĉD)k+2
> 0,

where the inequality follows from NE ∈ (0, 1/fE) and ĉD > 0. Thus, λ̂ is a valid
multiplier. Next, plugging (B29) into (B28), we obtain

(B30) [
1

NE
− fE ]

γ(k + 1)(k + 2)(cM )k

k(ĉD)k+1
+ (1−NEfE)

η(k + 2)

kĉD
= α.

As noted in Appendix C, the left hand side of (B30) is decreasing in NE and
ĉD. Thus, for any given parameter specification, a unique and positive value for
ĉD solves (B30); furthermore, a higher value for NE generates in a lower value
for the solution ĉD. Using (B30), we may further verify that (i) ĉD approaches
infinity as NE approaches zero, and (ii) ĉD approaches zero as NE approaches

1/fE . Thus, for a given cM , there exists ÑE ∈ (0, 1/fE) such that ĉD < cM if

and only if NE > ÑE .

As in Appendix C, we may now confirm that our candidate solution exists and is
uniquely determined for any NE > ÑE . As noted, a unique and positive value for
ĉD solves (B30). It follows from (B29) that a unique and positive value for λ̂ is thus

determined. Last, q̂(c) is thus uniquely determined as q̂(c) = max{ λ̂
γ (ĉD − c), 0}

for all c ∈ [0, cM ].

Market solution. — We now derive a similar pair of equations to determine
the market solution for given NE ∈ (0, 1/fE). For comparison purposes, let us

denote the market solution for given NE as (q̃, c̃D, λ̃). Using (32) and pmax = cD,
we have that

q̃(c) =
λ̃(c̃D − c)

2γ

for all c ∈ [0, c̃D]. The labor market equilibrium condition again is represented
as the resource constraint (38). With profit redistributed to consumers in equal
shares, (38) then ensures that the consumer budget constraint binds. Plugging
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this quantity allocation function into the resource constraint (38), we get that

(B31) NE

[
(c̃D)

k+2(cM )−kkλ̃

(k + 1)(k + 2)2γ
+ fE

]
= 1,

where c̃D > 0 clearly follows from (B31) given NE ∈ (0, 1/fE). We also have from
(37) that

(B32) NE =
2γ (k + 1) (cM )k

η

(
α− λ̃c̃D

)
λ̃ (c̃D)

k+1
.

We may use (B31) and (B32) to solve for λ̃ and c̃D.

Solving (B31) for λ̃, we obtain

(B33) λ̃ =
1−NEfE

NE

2γ(k + 1)(k + 2)(cM )k

k(c̃D)k+2
> 0,

where the inequality follows from NE ∈ (0, 1/fE) and c̃D > 0. Thus, λ̃ is a valid
multiplier. Next, plugging (B33) into (B32), we obtain

(B34) [
1

NE
− fE ]

2γ(k + 1)(k + 2)(cM )k

k(c̃D)k+1
+ (1−NEfE)

η(k + 2)

kc̃D
= α.

Proceeding as above for (B30), we note that the left hand side of (B34) is de-
creasing in NE and c̃D. Thus, for any given parameter specification, a unique and
positive value for c̃D solves (B34); furthermore, a higher value for NE generates
in a lower value for the solution c̃D. Using (B34), we may further verify that (i)
c̃D approaches infinity as NE approaches zero, and (ii) c̃D approaches zero as NE

approaches 1/fE . Thus, for a given cM , there exists Ñmkt
E ∈ (0, 1/fE) such that

c̃D < cM if and only if NE > Ñmkt
E .

Proceeding again as above, we may now confirm that the market solution exists
and is uniquely determined for any NE > Ñmkt

E . As noted, a unique and positive
value for c̃D solves (B34). It follows from (B33) that a unique and positive

value for λ̃ is thus determined. Last, q̃(c) is thus uniquely determined as q̃(c) =

max{ λ̃
2γ (c̃D − c), 0} for all c ∈ [0, cM ].

Comparisons. — Comparing (B30) and (B34), we see that the expressions differ
only in that the LHS of the latter has “2γ” where the LHS of the former has “γ.”
It thus follows that the LHS of the latter is higher than the LHS of the former
for all NE ∈ (0, 1/fE). We may thus conclude that Ñmkt

E > ÑE . Hence, our
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assumption that NE is sufficiently large so that selection (cD < cM ) occurs in

both settings is met if and only if NE > Ñmkt
E . In other words, selection is more

difficult to ensure in the market setting.

Similarly, for a given NE > Ñmkt
E , it follows that c̃D > ĉD. In other words,

the market solution provides too little selection and has too many varieties. To
compare aggregate quantities, we find that the first best aggregate Q̂ for the
fixed-NE setting is given as

Q̂ = NE

∫ ĉD

0
q̂(c)dG(c) = (1−NEfE)

k + 2

k
(ĉD)

−1,

where the final equality utilizes q̂(c) = λ̂
γ (ĉD − c), the solution for λ̂ given in

(B29) and the Pareto distribution (1). Similarly, the market aggregate Q̃ for the
fixed-NE setting is given as

Q̃ = NE

∫ c̃D

0
q̃(c)dG(c) = (1−NEfE)

k + 2

k
(c̃D)

−1,

where the final equality utilizes q̃(c) = λ̃(c̃D−c)
2γ , the solution for λ̃ given in (B33)

and the Pareto distribution (1). Given c̃D > ĉD, it follows immediately that

Q̂ > Q̃. The aggregate quantity of the market is thus too low.

Finally, we may also compare the quantity allocation functions. Following the
two steps in the proof of Proposition 6, we first divide (B33) by (B29) and obtain

(B35)
λ̃(c̃D)

k+2

λ̂(ĉD)k+2
= 2.

Since c̃D > ĉD, ĉD > 0 and k ≥ 1, we can also write

(B36)

(
c̃D
ĉD

)k+1

= κ

for some κ > 1. Dividing (B35) by (B36), we obtain

λ̃c̃D

λ̂ĉD
=

2

κ
< 2.

We thus conclude that

(B37) λ̃c̃D < 2λ̂ĉD.
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For the second step, we recall from above that

q̂(c) = max{ λ̂
γ
(ĉD − c), 0},∀c ∈ [0, cM ].

q̃(c) = max{ λ̃

2γ
(c̃D − c), 0}, ∀c ∈ [0, cM ].

We can thus write

q̃(0)− q̂(0) =
λ̃c̃D − 2λ̂ĉD

2γ
< 0,

where the inequality follows from (B37). We also know that

q̃(ĉD)− q̂(ĉD) = q̃(ĉD) =
λ̃

2γ
(c̃D − ĉD) > 0,

where the inequality follows from λ̃ > 0 and c̃D > ĉD.
Given these findings about the endpoints and that q̂(c) and q̃(c) are linear

functions for c ∈ [0, ĉD], it follows that q̂(c) is steeper over this range (i.e., λ̂ >

λ̃/2). We thus conclude that there exists a critical cost level cSR ∈ (0, ĉD) such
that q̂(c) > q̃(c) for c ∈ [0, cSR), q̂(cSR) = q̃(cSR), and q̂(c) < q̃(c) for c ∈
(cSR, c̃D].


