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I. Online Appendix: Extensions

A. Three Quality Levels

Consider the setup described in Section IV.A for k = 3. To streamline the
exposition with the baseline model, let the three quality levels be L, M and H,
with vL < vM < vH and cL < cM < cH . Let sM = vM − cM and assume that
sM > 0. To shorten the notation slightly, let τ (1|θ) = τL (θ) and τ (2|θ) = τM (θ).
Therefore, type-θ seller has τL (θ) units of L, τM (θ) − τL (θ) units of M , and
1− τM (θ) units of H, and

C (q, θ) =qcL + [q − τL (θ)]+ (cM − cL) + [q − τM (θ)]+ (cH − cM ) ,

V (q, θ) =qvL + [q − τL (θ)]+ (vM − vL) + [q − τM (θ)]+ (vH − vM ) .

With an abuse of notation, let F denote the distribution of θ and f its density,
assumed to be strictly positive over θ ∈ (0, 1). To simplify the exposition, we also
assume that τL and τH are both differentiable, and τ ′L (θ) , τ ′M (θ) > 0 for all θ
(i.e., single-crossing).

Our main program is program (P), with the type λ replaced by θ. Note that

∂C (q, θ)

∂θ
= I (q > τL (θ)) τ ′L (θ) (cM − cL) + I (q > τM (θ)) τ ′M (θ) (cH − cM ) .

Thus, by the envelope theorem,

US (θ) = US (0) + (cM − cL)

∫ θ

0
τ ′L (l) I (q (l) > τL (l)) dl

+ (cH − cM )

∫ θ

0
τ ′M (l) I (q (l) > τM (l)) dl.

Following the same argument as that for the baseline model, program (P̃) in the
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current setup is
(1)

max
q(·),US(0)

∫ 1
0 S (q (θ) , θ) f (θ) dθ − b s.t.

q (·) is nondecreasing , US (0) ≥ 0 , and
∫ 1

0 ψ
B (q (θ) , θ) dθ − US (0) = b

where

S (q, θ) :=V (q, θ)− C (q, θ) ,

ψS (q, θ) :=
[
(cM − cL) τ ′L (θ) I (q > τL (θ)) + (cH − cM ) τ ′M (θ) I (q > τM (θ))

]
[1− F (θ)] ,

ψB (q, θ) :=S (q, θ) f (θ)− ψS (q, θ) .

A threshold schedule here is a schedule q (·) in which there exist θM and θH , with
θM ≤ θH , such that q (θ) = τL (θ) if θ < θM , q (θ) = τM (θ) if θ ∈ [θM , θH), and
q (θ) = 1 if θ ≥ θH .

LEMMA 1: If q (·) is a solution to program (1), it must satisfy the following
properties:

1) q (θ) ≥ τL (θ) for all θ.

2) If there exists an interval X =
[
θ, θ̄
]

such that q (θ) > τM (θ) for all θ ∈ X,
then there is some q̂ such that q (θ) = q̂ for all θ ∈ X.

3) If there exists an interval X =
[
θ, θ̄
]

such that τL (θ) < q (θ) ≤ τM (θ) for
all θ ∈ X, then there is some q̂ such that q (θ) = min {τM (θ) , q̂} for all
θ ∈ X.

PROOF:
Lemma 1 is the extension of Lemma 5 and follows from S (q, θ) and ψB (q, θ)

being strictly increasing in q when q < τL (θ), q ∈ (τL (θ) , τM (θ)) and q ∈
(τM (θ) , 1).
Next, let q∗ (·) denote a solution to program (1). Let χ be the set of θ in which
q∗ (θ) /∈ {τL (θ) , τM (θ) , 1}. Note that if χ is empty, then q∗ is a threshold sched-
ule. We will show that χ is empty if the following condition holds:

CONDITION 1: f/ [1− F ] is nondecreasing, τL and τM are weakly concave, and
τM (θ)−τL(θ)

τ ′L(θ)

(
f(θ)

1−F (θ)

)
is nondecreasing in θ.

The following is an example that satisfies Condition 1: F is log-concave (e.g.,
uniform distribution), and τM and τL are affine functions, with τM weakly steeper
than τL.

We will prove that χ is empty under Condition 1 now. As before, without loss
of generality, we assume that q∗ is right-continuous. Let θ1 be the infimum of χ.
Henceforth, let q∗ (θ1) be denoted by q∗1. Because of point 1 of Lemma 1 and that
q∗ is right-continuous, it must be the case that q∗1 ∈ (τL (θ) , 1). We break things
down into two cases:
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• Case 1: τL (θ1) < q∗1 ≤ τM (θ1).

• Case 2: τM (θ1) < q∗1 < 1.

Consider Case 1 first. By point 3 of Lemma 1, there exists θ2 < 1 such q∗ (θ) =
min {τM (θ) , τL (θ2)} for all θ ∈ [θ1, θ2] and there exists θ3 such that q∗ (θ) = τL (θ)
for all θ ∈ [θ2, θ3]. For some small ε > 0, define η1 (ε) implicitly by

(2)

∫ θ2+η1(ε)

θ1+ε
τ ′L (θ) [1− F (θ)] dθ =

∫ θ2

θ1

τ ′L (θ) [1− F (θ)] dθ.

Pick the ε to be small enough such that θ2 + η1 (ε) < θ3 and τL
(
θ2 + η1 (ε)

)
<

τM (θ1 + ε). Let q̂1
ε be the schedule in which

q̂1
ε (θ) =


q∗ (θ) if θ /∈ [θ1, θ3)

τL (θ) if θ ∈ [θ1, θ1 + ε)

min
{
τM (θ) , τL

(
θ2 + η1 (ε)

)}
if θ ∈ [θ1 + ε, θ2 + η1 (ε))

τL (θ) if θ ∈ [θ2 + η1 (ε) , θ3)

Thus,

δ1
ε =

∫ 1

0

[
S
(
q̂1
ε (θ) , θ

)
− S (q∗ (θ) , θ)

]
f (θ) dθ

=sM

∫ θ2+η1(ε)

θ1+ε

[
min

{
τM (θ) , τL

(
θ2 + η1 (ε)

)}
− τL (θ)

]
f (θ) dθ

− sM
∫ θ2

θ1

[min {τM (θ) , τL (θ2)} − τL (θ)] f (θ) dθ

By equation (2) and Lemma 2 below, we have δ1
ε > 0. Equation (2) implies that∫ 1

0 ψ
S
(
q̂1
ε (θ) , θ

)
dθ =

∫ 1
0 ψ

S (q∗ (θ) , θ) dθ. This implies that
∫ 1

0 ψ
B
(
q̂1
ε (θ) , θ

)
dθ−∫ 1

0 ψ
B (q∗ (θ) , θ) dθ = δ1

ε > 0. Thus, q̂1
ε is feasible, but q̂1

ε achieves a higher
objective value than q∗, which is a contradiction. This rules out Case 1.

Next, consider Case 2. Let θ2 be the largest θ in which q∗ (θ) = q∗1. Lemma 1
implies that either τM (θ2) = q∗1 (Case 2A) or τL (θ2) = q∗1 (Case 2B).

Consider Case 2A first. Under Case 2A, there must exist θ3 such that q∗ (θ) =
τM (θ) for all θ ∈ [θ2, θ3]. For some small ε > 0, define η2A (ε) implicitly by

(3)

∫ θ2+η2A(ε)

θ1+ε
τ ′M (θ) [1− F (θ)] dθ =

∫ θ2

θ1

τ ′M (θ) [1− F (θ)] dθ.

Pick the ε to be small enough such that θ2 +η2A (ε) < θ3. Let q̂2A
ε be the schedule
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in which

q̂2A
ε (θ) =


q∗ (θ) if θ /∈ [θ1, θ3)

τM (θ) if θ ∈ [θ1, θ1 + ε)

τM
(
θ2 + η2A (ε)

)
if θ ∈ [θ1 + ε, θ2 + η2A (ε))

τM (θ) if θ ∈ [θ2 + η2A (ε) , θ3)

Thus,

δ2A
ε =

∫ 1

0

[
S
(
q̂2A
ε (θ) , θ

)
− S (q∗ (θ) , θ)

]
f (θ) dθ

=sH

(∫ θ2+η2A(ε)

θ1+ε

[
τM
(
θ2 + η2A (ε)

)
− τM (θ)

]
f (θ) dθ −

∫ θ2

θ1

[τM (θ2)− τM (θ)] f (θ) dθ

)
.

By equation (3) and Lemma 3 below, we have δ2A
ε > 0. Equation (3) implies that∫ 1

0 ψ
S
(
q̂2A
ε (θ) , θ

)
dθ =

∫ 1
0 ψ

S (q∗ (θ) , θ) dθ. This implies that
∫ 1

0 ψ
B
(
q̂2A
ε (θ) , θ

)
dθ−∫ 1

0 ψ
B (q∗ (θ) , θ) dθ = δ2A

ε > 0. Thus, q̂2A
ε is feasible, but q̂2A

ε achieves a higher
objective value than q∗, which is a contradiction. This rules out Case 2A.

Consider Case 2B next. Under Case 2B, there must exist θ3 such that q∗ (θ) =

τL (θ) for all θ ∈ [θ2, θ3]. Let θ̃ be the type such that τM

(
θ̃
)

= q∗. Note that

θ1 < θ̃ < θ2. For some small ε > 0, define γ1 (ε) and γ2 (ε) implicitly by

∫ θ̃+γ1(ε)
θ1+ε τ ′M (θ) [1− F (θ)] dθ =

∫ θ̃
θ1
τ ′M (θ) [1− F (θ)] dθ(4) ∫ θ2+γ2(ε)

θ̃+γ1(ε)
τ ′L (θ) [1− F (θ)] dθ =

∫ θ2
θ̃
τ ′L (θ) [1− F (θ)] dθ(5)

Pick the ε to be small enough such that θ2 + γ2 (ε) < θ3. Let θ̃′ be the type such

that τM

(
θ̃′
)

= τL (θ2 + γ2 (ε)). Let q̂2B
ε be the schedule in which

q̂2B
ε (θ) =



q∗ (θ) if θ /∈ [θ1, θ3)

τM (θ) if θ ∈ [θ1, θ1 + ε)

τM

(
θ̃ + γ1 (ε)

)
if θ ∈ [θ1 + ε, θ̃ + γ1 (ε))

τM (θ) if θ ∈ [θ̃ + γ1 (ε) , θ̃′)

τL (θ2 + γ2 (ε)) if θ ∈ [θ̃′, θ2 + γ2 (ε))

τL (θ) if θ ∈ [θ2 + γ2 (ε) , θ3)

Observe that equations (4) and (5) imply that
∫ 1

0 ψ
S
(
q̂2B
ε (θ) , θ

)
dθ =

∫ 1
0 ψ

S (q∗ (θ) , θ) dθ.
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Moreover,

δ2B
ε =

∫ 1

0

[
S
(
q̂2B
ε (θ) , θ

)
− S (q∗ (θ) , θ)

]
f (θ) dθ

=sH

(∫ θ̃+γ1(ε)

θ1+ε

[
τM

(
θ̃ + γ1 (ε)

)
− τM (θ)

]
f (θ) dθ −

∫ θ̃

θ1

[
τM

(
θ̃
)
− τM (θ)

]
f (θ) dθ

)(6)

+ sM

(∫ θ2+γ2(ε)

θ̃+γ1(ε)
[min {τM (θ) , τL (θ2 + γ2 (ε))} − τL (θ)] f (θ) dθ

(7)

−
∫ θ2

θ̃
[τL (θ2)− τL (θ)] f (θ) dθ

)(8)

Equation (4) and Lemma 3 below jointly imply that line (6) is positive. Equa-
tion (5) and Lemma 2 below jointly imply that line (7) minus line (8) is positive.

Therefore, δ2B
ε > 0. This implies that

∫ 1
0 ψ

B
(
q̂2B
ε (θ) , θ

)
dθ−

∫ 1
0 ψ

B (q∗ (θ) , θ) dθ =

δ2B
ε > 0. Thus, q̂2B

ε is feasible, but q̂2B
ε achieves a higher objective value than q∗,

which is a contradiction. This rules out Case 2B as well.

Since both Case 1 and Case 2 are not possible, χ must be an empty set. There-
fore, q∗ must be a threshold schedule. We summarize the argument above in the
following proposition:

PROPOSITION 1: Suppose that Condition 1 holds. If q (·) is a solution to pro-
gram (1), q (·) must be a threshold schedule — i.e., there exist θM ≤ θH such that
q (θ) = τL (θ) if θ < θM , q (θ) = τM (θ) if θ ∈ [θM , θH), and q (θ) = 1 if θ ≥ θH .

We conclude this subsection with the proofs of Lemmas 2 and 3.

LEMMA 2: Let θ1 < θ′1 < θ2 < θ′2. Under Condition 1,
∫ θ′2
θ′1
τ ′L (θ) [1− F (θ)] dθ =∫ θ2

θ1
τ ′L (θ) [1− F (θ)] dθ implies that

∫ θ′2

θ′1

[
min

{
τM (θ) , τL

(
θ′2
)}
− τL (θ)

]
f (θ) dθ−

∫ θ2

θ1

[min {τM (θ) , τL (θ2)} − τL (θ)] f (θ) dθ > 0.

PROOF:

For x > θ1, define φ (x) by
∫ φ(x)
x τ ′L (θ) [1− F (θ)] dθ =

∫ θ2
θ1
τ ′L (θ) [1− F (θ)] dθ.
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This implies that φ′ (x) =
τ ′L(x)[1−F (x)]

τ ′L(φ(x))[1−F (φ(x))]
. Let

D (x) =

∫ φ(x)

x
[min {τM (θ) , τL (φ (x))} − τL (θ)] f (θ) dθ−

∫ θ2

θ1

[min {τM (θ) , τL (θ2)} − τL (θ)] f (θ) dθ.

Suppose first that τM (x) > τL (φ (x)). This implies that

D (x) =

∫ φ(x)

x
[τL (φ (x))− τL (θ)] f (θ) dθ −

∫ θ2

θ1

[τL (θ2)− τL (θ)] f (θ) dθ,

and

D′ (x) = [F (φ (x))− F (x)] τ ′L (φ (x))φ′ (x)− [τL (φ (x))− τL (x)] f (x)

= [F (φ (x))− F (x)]
τ ′L (x) [1− F (x)]

[1− F (φ (x))]
− [τL (φ (x))− τL (x)] f (x)

∝ F (φ (x))− F (x)

[1− F (φ (x))] [φ (x)− x]
−
[
τL (φ (x))− τL (x)

φ (x)− x
× 1

τ ′L (x)

]
f (x)

1− F (x)

≥ F (φ (x))− F (x)

[1− F (φ (x))] [φ (x)− x]
− f (x)

1− F (x)

where the inequality follows from τ ′L (x) ≥ τL(φ(x))−τL(x)
φ(x)−x because τL is concave.

Using the same argument that establishes statement (A7) in the proof of Lemma
2, the last line is positive; thus, D′ (x) > 0.

Next, suppose that τM (x) ≤ τL (φ (x)). Let x̂ = τ−1
M (τL (φ (x))). Therefore,

D (x) =

∫ x̂

x
[τM (θ)− τL (θ)] f (θ) dθ+

∫ φ(x)

x̂
[τL (φ (x))− τL (θ)] f (θ) dθ−

∫ θ2

θ1

[τL (θ2)− τL (θ)] f (θ) dθ
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and

D′ (x) = − [τM (x)− τL (x)] f (x) + [F (φ (x))− F (x̂)] τ ′L (φ (x))φ′ (x)

= [F (φ (x))− F (x̂)]
τ ′L (x) [1− F (x)]

[1− F (φ (x))]
− [τM (x)− τL (x)] f (x)

∝ F (φ (x))− F (x̂)

1− F (φ (x))
− τM (x)− τL (x)

τ ′L (x)

(
f (x)

1− F (x)

)
≥ F (φ (x))− F (x̂)

1− F (φ (x))
− τM (x̂)− τL (x̂)

τ ′L (x̂)

(
f (x̂)

1− F (x̂)

)
(9)

=
F (φ (x))− F (x̂)

1− F (φ (x))
− τL (φ (x))− τL (x̂)

τ ′L (x̂)

(
f (x̂)

1− F (x̂)

)
∝ F (φ (x))− F (x̂)

[1− F (φ (x))] [φ (x)− x̂]
−
[
τL (φ (x))− τL (x̂)

φ (x)− x̂
× 1

τ ′L (x̂)

]
f (x̂)

1− F (x̂)

≥ F (φ (x))− F (x̂)

[1− F (φ (x))] [φ (x)− x̂]
− f (x̂)

1− F (x̂)

The inequality in (9) is due to the last part of Condition 1. Therefore, as before,
D′ (x) > 0.

For both cases, since limx↓θ1 D (x) = 0, this implies that D (x) > 0 for x > θ1,
which establishes the lemma.

LEMMA 3: Let θ1 < θ′1 < θ2 < θ′2. Under Condition 1,
∫ θ′2
θ′1
τ ′M (θ) [1− F (θ)] dθ =∫ θ2

θ1
τ ′M (θ) [1− F (θ)] dθ implies that

∫ θ′2

θ′1

[
τM
(
θ′2
)
− τM (θ)

]
f (θ) dθ −

∫ θ2

θ1

[τM (θ2)− τM (θ)] f (θ) dθ > 0.

The proof of Lemma 3 follows the same argument as that for Lemma 2 for the
case of τM (x) > τL (φ (x)); thus, we omit it.

B. Asymmetric Information on Endowment Size

We consider an extension wherein the size of the seller’s endowment is also her
private information, as described in Section IV.B of the main text.

Let F (·|n) denote the distribution of λ conditional on n and J (·) denote the
distribution of n. Let their respective densities be f (·|n) and j (·). With a
slight abuse of notations, let (q (n, λ) , t (n, λ))n∈[0,1],λ∈[0,n] denote a direct mech-

anism, and let UB (n, λ) = V (q (n, λ) , λ) − t (n, λ) and US (n, λ) = t (n, λ) −
C (q (n, λ) , λ). Program (P) in the current setup is
(10)

max
q(·),t(·)

∫ 1
0

∫ n
0 US (n, λ) f (λ|n) j (n) dλdn, s.t. (ICeS), (IReS) and (IReB)
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where

US (n, λ) ≥ t
(
n′, λ′

)
− C

(
q
(
n′, λ′

)
, λ
)
∀ (n, λ) ,

(
n′, λ′

)
,(ICeS)

US (n, λ) ≥ 0 ∀ (n, λ)(IReS)

∫ 1

0

∫ n

0
UB (n, λ) f (λ|n) j (n) dλdn ≥ b

(IReB)

Because the type is two-dimensional, the type space does not have a complete
order, which means that defining a monotonicity notion for the quantity schedule
is not straightforward. The following is the appropriate monotonicity notion:

DEFINITION 1: q (·) is “ monotonic” if

• for any two types (n′, λ′) and (n, λ) in which λ′ > λ, either q (n′, λ′) ≥
q (n, λ) or q (n, λ) > n′ = q (n′, λ′).

• for any two types (n′, λ) and (n, λ) in which n′ > n, either q (n′, λ) = q (n, λ)
or q (n′, λ) > n = q (n, λ).

In words, when λ′ > λ, the type with λ′ (or more Ls) must trade weakly more
than the type with λ whenever the endowment of λ′ permits. Therefore, if the
lower λ trades more than the higher λ′, it must imply that λ′ trades her entire
endowment (i.e., her endowment constraint binds). Next, if two types have the
same λ, then they must trade the same quantity whenever their endowments
permit. Therefore, if q (n′, λ) > q (n, λ), it must imply that type (n, λ) trades her
entire endowment.

Similar to Lemma 1, the seller’s truth-telling constraint (ICeS) can be replaced
by the following two conditions:

US (n, λ) = US (n, 0) + (cH − cL)

∫ λ

0
I (q (n, l) > l) dl ∀ (n, λ) ,(11)

q (·) is monotonic according to Definition 1.(12)

From equation (11), for each n, constraint (IReS) holds for all (n, λ) if it holds
for (n, 0). Additionally, substituting in equation (11), the objective function of
program (10) becomes∫ 1

0
US (0, n) j (n) dn+

∫ 1

0
(cH − cL)

∫ n

0
I (q (λ) > λ) [1− F (λ|n)] j (n) dλdn,

and constraint (IReB) becomes∫ 1

0

∫ n

0
ψB (q (n, λ) , n, λ) j (n) dλdn−

∫ 1

0
US (0, n) j (n) dn ≥ b,
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where (with an abuse of notation)

ψB (q, n, λ) = S (q, λ) f (λ|n)− (cH − cL) I (q > λ) [1− F (λ|n)] .

This implies that constraint (IReB) must bind. Therefore, program (10) becomes
(13)

max
q(·),u0

∫ 1
0

∫ n
0 S (q (n, λ) , λ) f (λ|n) j (n) dλdn− b s.t.

q (·) is monotonic , u0 ≥ 0 , and
∫ 1

0

∫ n
0 ψB (q (n, λ) , n, λ) j (n) dλdn− u0 = b

.

LEMMA 4: If q (·) is a solution to program (13), q (·) must satisfy the following
two conditions:

1) q∗ (n, λ) ≥ λ for all (n, λ).

2) Let X be the set of λ such that q (1, λ) > λ.

a) If X is empty, then q (n, λ) = λ for all (n, λ).

b) Suppose that X is nonempty. Let λ1 denote the smallest λ in X , and
let λ2 denote the smallest λ ∈ (λ1, 1] such that q∗ (1, λ) = λ. It holds
that for all λ ∈ [λ1, λ2], q (n, λ) = min {n, λ2}.

PROOF:

S (q, λ) is strictly increasing in q. When q < λ, ψB (q, n, λ) is also strictly
increasing in q. This explains point 1. Next, monotonicity of q (·) implies that
for all λ, q (1, λ) ≥ q (n, λ). Point 2a hence follows. Finally, for Point 2b, since
ψB (q, n, λ) is also strictly increasing in q when q > λ, it must be the case the
q (1, λ) = λ2 for all λ ∈ [λ1, λ2]. Point 2b then follows from the monotonicity of
q (·).
Lemma 4 is the analog Lemma 5. Point 2b states that unless every type sells
only their Ls, the optimal quantity schedule must feature some bunching, similar
to the middle panel of Figure 1 for the baseline model. The difference is that
because of the endowment constraint for some types, such bunching might not
always be possible. When this happens, the endowment constraint for these types
must bind.

The following is a sufficient condition for the solution quantity schedule to
always be a threshold schedule:

CONDITION 2: For all λ′ > λ, f(λ′|n≥λ′)
1−F (λ′|n≥λ′) −

f(λ|n≥λ)
1−F (λ|n≥λ) ≥ ξ (λ′, λ), where

ξ (x, λ) := − d
dx log

∫ 1
x [1− F (λ|n)] j (n) dn.

Note that ξ (λ′, λ) is always positive. Thus, Condition 2 requires the conditional
hazard rate to be increasing sufficiently quickly (as opposed to only increasing).
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The following is an example that satisfies Condition 2: j (n) = 2n and F (λ|n) is
the uniform distribution over [0, n].1

PROPOSITION 2: Under Condition 2, if q (·) is a solution to program (13),
then q (·) must be a threshold schedule — i.e., there exists x such that q (n, λ) = λ
if λ ≤ x and q (n, λ) = n if λ > x.

PROOF:
Let q∗ (·) be an optimal schedule. Let λ1 and λ2 be as defined in Lemma 4.

The lemma is proved by showing that λ2 = 1. Suppose, for a contradiction, that
λ2 < 1. There must then exist λ3 > λ2 such that q∗ (1, λ) = λ for all λ ∈ [λ2, λ3].
Since q∗ (·) is monotonic, this also implies that for any n < 1 and λ ∈ [λ2, λ3],
q∗ (n, λ) = λ. Observe that∫ 1

0

∫ λ3

λ1

S (q∗ (n, λ) , λ) f (λ|n) j (n) dλdn

=

∫ n

λ3

∫ λ3

λ1

S (q∗ (n, λ) , λ) f (λ|n) j (n) dλdn +

∫ λ3

λ1

∫ n

λ1

S (q∗ (n, λ) , λ) f (λ|n) j (n) dλdn

=

∫ 1

0

∫ λ3

λ1

λsLf (λ|n) j (n) dλdn

+

∫ 1

λ2

∫ λ2

λ1

(λ2 − λ) sHf (λ|n) j (n) dλdn +

∫ λ2

λ1

∫ n

λ1

(n− λ) sHf (λ|n) j (n) dλdn

For some small ε > 0 and x ∈ [λ1, λ1 + ε], let φ (x) be such that∫ 1

φ(x)

∫ φ(x)

x
(φ (x)− λ) sHf (λ|n) j (n) dλdn +

∫ φ(x)

x

∫ n

x
(n− λ) sHf (λ|n) j (n) dλdn

=

∫ 1

λ2

∫ λ2

λ1

(λ2 − λ) sHf (λ|n) j (n) dλdn +

∫ λ2

λ1

∫ n

λ1

(n− λ) sHf (λ|n) j (n) dλdn

(14)

We restrict ε to be small enough such that φ (λ1 + ε) < λ3.
Define schedule q̂x as follows:

q̂x (n, λ) =


q∗ (n, λ) , if λ /∈ [λ1, λ3)

λ , if λ ∈ [λ1, x)

min {n, φ (x)} , if λ ∈ [x, φ (x))

λ , if λ ∈ [φ (x) , λ3)

1To be precise, this means that f (λ|n) = 1
n

for λ ∈ [0, n] and f (λ|n) = 0 for λ > n. It is readily

verified that
f(λ|n≥λ)

1−F (λ|n≥λ) = 2
1−λ and ξ (λ′, λ) =

2(λ′−λ)
(1−λ′)(1−λ)+(λ′−λ)(1−λ′) ; thus Condition 2 holds.
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By construction,
(15)∫ 1

0

∫ n

0
S (q̂x (n, λ) , λ) f (λ|n) j (n) dλdn =

∫ 1

0

∫ n

0
S (q∗ (n, λ) , λ) f (λ|n) j (n) dλdn.

Let
ψS (q, n, λ) = I (q > λ) (cH − cL) [1− F (λ|n)] .

Therefore, ψB (q, n, λ) = S (q, λ) f (λ|n) − ψS (q, n, λ). The difference in the
buyer’s expected utility between q̂x (·) and q∗ (·) is

D (x) =

∫ 1

0

∫ n

0

[
ψB (q̂x (n, λ) , n, λ)− ψB (q∗ (n, λ) , n, λ)

]
j (n) dλdn

=

∫ 1

0

∫ n

0

[
ψS (q∗ (n, λ) , n, λ)− ψS (q̂x (n, λ) , n, λ)

]
j (n) dλdn

=

∫ 1

λ3

∫ λ3

λ1

[
ψS (q∗ (n, λ) , n, λ)− ψS (q̂x (n, λ) , n, λ)

]
j (n) dλdn

+

∫ λ3

λ1

∫ n

λ1

[
ψS (q∗ (n, λ) , n, λ)− ψS (q̂x (n, λ) , n, λ)

]
j (n) dλdn

= (cH − cL)

[∫ 1

λ2

(∫ λ2

λ1

1− F (λ|n) dλ

)
h (n) dn+

∫ λ2

λ1

(∫ n

λ1

1− F (λ|n) dλ

)
j (n) dn

]
− (cH − cL)

[∫ 1

φ(x)

(∫ φ(x)

x
1− F (λ|n) dλ

)
j (n) dn+

∫ φ(x)

x

(∫ n

x
1− F (λ|n) dλ

)
j (n) dn

]
.

Differentiating D (x) with respect to x, we have

D′ (x) =

[∫ 1

x
[1− F (x|n)] j (n) dn−

(∫ 1

φ(x)
[1− F (φ (x) |n)] j (n) dn

)
φ′ (x)

]
(cH − cL)

From equation (14), we have

φ′ (x) =

∫ 1
φ(x) [φ (x)− x] f (x|n) j (n) dn+

∫ φ(x)
x (n− x) f (x|n) j (n) dn∫ 1

φ(x) [F (φ (x) |n)− F (x|n)] j (n) dn

>
[φ (x)− x]

∫ 1
x f (x|n) j (n) dn∫ 1

φ(x) [F (φ (x) |n)− F (x|n)] j (n) dn

11



Therefore, we have D′ (x) > 0 if

[φ (x)− x]
∫ 1
x f (x|n) j (n) dn∫ 1

φ(x) [F (φ (x) |n)− F (x|n)] j (n) dn
≤

∫ 1
x [1− F (x|n)] j (n) dn(∫ 1

φ(x) [1− F (φ (x) |n)] j (n) dn
)

⇐⇒
∫ 1
x f (x|n) j (n) dn∫ 1

x [1− F (x|n)] j (n) dn
≤

∫ 1
φ(x) [F (φ (x) |n)− F (x|n)] j (n) dn

[φ (x)− x]
(∫ 1

φ(x) [1− F (φ (x) |n)] j (n) dn
)

Fixing some λ, let LHS =
∫ 1
λ f(λ|n)j(n)dn∫ 1

λ [1−F (λ|n)]j(n)dn
, and letRHS (λ′) =

∫ 1
λ′ [F (λ′|n)−F (λ|n)]j(n)dn

(λ′−λ)
∫ 1
λ′ [1−F (λ′|n)]j(n)dn

.

By L’Hôpital’s rule, limλ′↓λRHS (λ′) = LHS and limλ′↑1RHS (λ′) = ∞. Sup-
pose, for a contradiction, that there exists λ′ ∈ (λ, 1) such that LHS > RHS (λ′).

This must imply that there exists λ̂ ∈ (λ, 1) such that LHS > RHS
(
λ̂
)

and

d
dλ′RHS (λ′)

∣∣∣
λ′=λ̂

= 0. By some algebra, d
dλ′RHS (λ′)

∣∣∣
λ′=λ̂

= 0 implies that

∫ 1
λ̂ f
(
λ̂|n
)
j (n) dn∫ 1

λ̂

[
1− F

(
λ̂|n
)]
j (n) dn

= RHS
(
λ̂
) ∫ 1

λ̂

[
1− F

(
λ̂|n
)]
j (n) dn∫ 1

λ̂ [1− F (λ|n)] j (n) dn
+

[
1− F

(
λ|λ̂
)]
j
(
λ̂
)

∫ 1
λ̂ [1− F (λ|n)] j (n) dn

< LHS +

[
1− F

(
λ|λ̂
)]
j
(
λ̂
)

∫ 1
λ̂ [1− F (λ|n)] j (n) dn

=

∫ 1
λ f (λ|n) j (n) dn∫ 1

λ [1− F (λ|n)] j (n) dn
− d

dλ̂
log

(∫ 1

λ̂
[1− F (λ|n)] j (n) dn

)
,

where the inequality in the second line follows from λ < λ̂ and LHS > RHS
(
λ̂
)

.

However, this contradicts Condition 2.2 Therefore, it holds that LHS ≤ RHS (λ′),
which implies that D′ (x) > 0.

Since D (λ1) = 0, there exists x > λ1 such that D (x) > 0, thus implying that
(16)∫ 1

0

∫ n

0
ψB (q̂x (n, λ) ;n, λ) j (n) dλdn >

∫ 1

0

∫ n

0
ψB (q∗ (n, λ) ;n, λ) j (n) dλdn

This implies that q̂x (·) is also feasible, and from equation (15), q̂x (·) is also
optimal. However, equation (16) implies that constraint (IReB) does not bind,
which is a contradiction.

2Note that f (λ|n ≥ λ) =
∫ 1
λ f(λ|n)j(n)dn

1−J(λ) and 1 − F (λ|n ≥ λ) =
∫ 1
λ j(n)dn−

∫ 1
λ F (λ|n)j(n)dn

1−J(λ) =∫ 1
λ [1−F (λ|n)]j(n)dn

1−J(λ) . Therefore,
f(λ|n≥λ)

1−F (λ|n≥λ) =
∫ 1
λ f(λ|n)j(n)dn∫ 1

λ [1−F (λ|n)]j(n)dn
.

12



C. Diminishing Marginal Utility

This subsection provides the details for the extension described in Subsection
IV.C. Our main program is still program (P), but with V now defined in Sub-
section IV.C.

The argument to transform program (P) to program (P̃) considers only the
seller’s incentives, which is unchanged here; thus, the argument still applies here.
However, note that in the current setup,

(17) S (q, λ) =

{
νL (q)− qcL if q ≤ λ
νL (λ)− λcL + νH (q − λ)− (q − λ) cH if q > λ

.

Let
s̄H (x) := νH (x)− xcH .

The condition required for the solution to program (P̃) to be a threshold schedule
is as follows:

CONDITION 3: For any z, x ∈ [0, 1] such that z > x,

(18)

∫ z

x
s̄′H (z − λ) f (λ) dλ ≥ s̄H (z − x)

z − x
[F (z)− F (x)] .

Note that equation (18) can be written as∫ z

x

[
s̄′H (z − λ)− s̄H (z − x)

z − x

]
f (λ) dλ ≥ 0.

Since s̄H is concave, by the mean value theorem, there exists λ̄ such that s̄′H (z − λ) >

(=) [<] s̄H(z−x)
z−x if λ > (=) [<] λ̄ — i.e., there are both positive and negative terms

in the integrand. Thus, Condition 3 is a restriction on the curvature of s̄H to-
gether with the distribution. The following is an example:

LEMMA 5: Condition 3 always holds if F is the uniform distribution.

PROOF:
When F is the uniform distribution, F (z)−F (x) = z−x; thus, the right-hand

side of equation (18) is s̄H (z − x). Since f (λ) = 1, the left-hand side of equation
(18) is

∫ z
x s̄
′
H (z − λ) dλ. By the fundamental theorem of calculus, this is equal to

s̄H (z − x).

PROPOSITION 3: Under Condition 3, if q (·) is a solution to program (P̃) in
the current setup, then q (·) must be a threshold schedule, defined in Definition 1.

PROOF:

13



Since ν ′L (x) > cL and ν ′H (x) > cH for all x, S (q, λ) defined in equation (17)
is still always strictly increasing in q. In turn, ψB (q, λ) is also increasing in q
when q < λ and when q > λ. Thus, Lemma 5 in the proof of Proposition 1 still
holds. Let λ1, λ2, λ3, η (ε) and q̂ε be as defined in that proof. Following the exact
arguments, we only have to show that δε in equation (A6) is positive, where, over
here,

δε =

∫ λ3

λ1

S [(q̂ε (λ) , λ)− S (q∗ (λ) , λ)] f (λ) dλ

=

∫ λ2+η(ε)

λ1+ε
s̄H (λ2 + η (ε)− λ) f (λ) dλ−

∫ λ2

λ1

s̄H (λ2 − λ) f (λ) dλ .

This is indeed the case from Lemma 6 below.

LEMMA 6: Under Condition 3, when f/ (1− F ) is nondecreasing, the following

property holds: for any λ1 < λ′1 < λ2 < λ′2, if
∫ λ′2
λ′1

1−F (λ) dλ =
∫ λ2
λ1

1−F (λ) dλ,

then

(19)

∫ λ′2

λ′1

s̄H
(
λ′2 − λ

)
f (λ) dλ >

∫ λ2

λ1

s̄H (λ2 − λ) f (λ) dλ.

PROOF:
Fix any λ1, λ2 > 0. For x > λ1, define φ (x) to be such that

∫ φ(x)
x 1−F (λ) dλ =∫ λ2

λ1
1 − F (λ) dλ. φ is strictly increasing and (by the implicit function theorem)

differentiable, with φ′ (x) = 1−F (x)
1−F (φ(x)) . Let x̄ = φ−1 (1) and

D̄ (x) :=

∫ φ(x)

x
s̄H (φ (x)− λ) f (λ) dλ−

∫ λ2

λ1

s̄H (λ2 − λ) f (λ) dλ

Our goal is to show that D̄ (x) > 0 for all x ∈ (λ1, x̄]. Note that D̄ (x) is also
differentiable for x ∈ (λ1, x̄), with

D̄′ (x) =

(∫ φ(x)

x
s̄′H (φ (x)− λ) f (λ) dλ

)
1− F (x)

1− F (φ (x))
− s̄H (φ (x)− x) f (x)

∝

[∫ φ(x)
x s̄′H (φ (x)− λ) f (λ) dλ

s̄H (φ (x)− x)

]
1

1− F (φ (x))
− f (x)

1− F (x)

≥
[
F (φ (x))− F (x)

φ (x)− x

]
1

1− F (φ (x))
− f (x)

1− F (x)
,

where the inequality holds because of Condition 3. In turn, from the property in
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equation (A7) in Appendix A, D̄′ (x) > 0. Since D̄ (x) is continuous for x ∈ [λ1, x̄]
and D̄ (λ1) = 0, D̄′ (x) > 0 for all x ∈ (λ1, x̄) implies that D̄ (x) > 0 for all
x ∈ (λ1, x̄].

D. Stochastic Mechanism

We consider the use of stochastic mechanism in this subsection. Because the
utility functions of both the seller and the buyer are linear in the transfers, it
suffice to allow for stochasticity only in the quantity. A stochastic contract is a
double (α, t), where t is still the transfer from the buyer to the seller, and α is
the CDF of the quantity that the seller must supply to the buyer. The following
are two important notations:

ᾱ (q) := 1− α (q)

α∆ (q) := α (q)− sup
x<q

α (q)

ᾱ (q) is the probability of having to supply more than q units under α. α∆ (q)
denote the mass at q; thus, a deterministic contract consists of α where there is
a q in which α∆ (q) = 1.

Let

C̄ (α, λ) =

∫ 1

0
C (q, λ) dα (q)

V̄ (α, λ) =

∫ 1

0
V (q, λ) dα (q)

S̄ (α, λ) =V̄ (α, λ)− C̄ (α, λ) =

∫ 1

0
S (q, λ) dα (q)

where C and V are defined in equations (1) and (2). Thus, under a stochastic
contract (α, t) between the buyer and the type-λ seller, the buyer’s and the seller’s
expected utility are V̄ (α, λ)− t and t− C̄ (α, λ), respectively.

Let {α (·|λ) , t (λ)}λ∈[0,1] denote a direct stochastic mechanism. Let ŪB (λ) =

V̄ (α (·|λ) , λ)− t (λ) and ŪS (λ) = t (λ)− C̄ (α (·|λ) , λ). Our main program is
(Pstoch)

max
{α(·|λ),t(λ)}λ∈[0,1]

∫ 1
0 Ū

S (λ) f (λ) dλ, s.t. ( ¯IC
S

), ( ¯IR
S

) and ( ¯IR
B

) ,
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where

ŪS (λ) ≥ t
(
λ′
)
− C̄

(
α
(
·|λ′
)
, λ
)

∀λ, λ′,( ¯IC
S

)

ŪS (λ) ≥ 0 ∀λ,( ¯IR
S

) ∫ 1

0
ŪB (λ) f (λ) dλ ≥ b.( ¯IR

B
)

By the envelope theorem, constraint ( ¯IC
S

) implies that

dŪS (λ)

dλ
= −∂C̄ (α (·|λ) , λ)

∂λ
= (cH − cL) ᾱ (λ|λ)

almost everywhere. Therefore,

ŪS (λ) = ŪS (0) + (cH − cL)

∫ λ

0
ᾱ (l|l) dl.( ¯IC

S′
)

Consider the program
(20)

max
{α(·|λ),t(λ)}λ∈[0,1]

∫ 1
0 Ū

S (λ) f (λ) dλ, s.t. ( ¯IC
S′

), ( ¯IR
S

) and ( ¯IR
B

) ,

Program (20) is a relaxed version of program (Pstoch) because it satisfies only

a set of necessary conditions for constraint ( ¯IC
S

). Thus, the value of program
(20) is weakly higher than the value of program (Pstoch). Say that a mechanism
{α (·|λ)}λ∈[0,1] is deterministic if {α (·|λ) , t (λ)} is a deterministic contract for all

λ. We will provide a condition under which program (20) has a solution mech-
anism that is deterministic and satisfies all the constraints of program (Pstoch);
thus, program (Pstoch) also has a solution mechanism that is deterministic.

CONDITION 4: (1−λ)f(λ)
1−F (λ) is nondecreasing.

PROPOSITION 4: Under Condition (4), there is a solution mechanism to pro-
gram (Pstoch) that consists of an {α (·|λ)}λ∈[0,1] that takes the form of a deter-

ministic threshold schedule — i.e., there exists a x such that α∆ (λ|λ) = 1 for all
λ < x and α∆ (1|λ) = 1 for all λ ≥ x.

We first provide some preliminary results to prove Proposition 4. First, constraint

( ¯IC
S′

) implies that t (λ) must satisfy

(21) t (λ) = ŪS (0) + (cH − cL)

∫ λ

0
ᾱ (l|l) dl + C̄ (α (·|λ) , λ)
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Doing integration by parts, we have
(22)∫ 1

0
t (λ) f (λ) dλ = ŪS (0)+(cH − cL)

∫ 1

0
ᾱ (λ]|λ) [1− F (λ)] dλ+

∫ 1

0
C̄ (α (·|λ) , λ) f (λ) dλ.

Therefore,∫ 1

0
ŪB (λ) f (λ) dλ =

∫ 1

0
S̄ (α (·|λ) , λ) f (λ) dλ− (cH − cL)

∫ 1

0
ᾱ (λ|λ) [1− F (λ)] dλ− ŪS (0) .

=

∫ 1

0
ψ̄B (α (·|λ) , λ) dλ− ŪS (0) ,

where

(23) ψ̄B (α, λ) = S̄ (α, λ) f (λ)− (cH − cL) ᾱ (λ) [1− F (λ)] .

Following the same argument as the one for Lemma 4, constraint ( ¯IR
B

) must
bind, and we can transform program (20) to the following program:

(P̃stoch)

max
{α(·|λ)}λ∈[0,1],ŪS(0)

∫ 1
0 S̄ (α (·|λ) , λ) f (λ) dλ− b s.t.

ŪS (0) ≥ 0 , and

∫ 1

0
ψ̄B (α (·|λ) , λ) dλ− ŪS (0) = b︸ ︷︷ ︸

( ¯IR
B′

)

Thus, our objective is to show that there exists a solution
{
{α (·|λ)}λ∈[0,1] , Ū

S (0)
}

for program (P̃stoch) in which {α (·|λ)}λ∈[0,1] takes the form of a deterministic
threshold schedule. We note the following property, which should be obvious:

LEMMA 7: For any
{
{α (·|λ)}λ∈[0,1] , Ū

S (0)
}

, if there exists {α̂ (·|λ)}λ∈[0,1] that

has the property that ψ̄B (α̂ (·|λ) , λ) ≥ ψ̄B (α (·|λ) , λ) and S̄ (α̂ (·|λ) , λ) > S̄ (α (·|λ) , λ)
for a set of λ that has a strictly positive measure, then {α (·|λ)}λ∈[0,1] cannot be

part of a solution to program (P̃stoch).

Next, observe that

S̄ (α, λ) =

∫
q∈[0,λ]

sLqdα (q) +

∫
q∈(λ,1]

[λsL + (q − λ) sH ] dα (q)

=

[∫
q∈[0,1]

min {q, λ} dα (q)

]
sL +

[∫
q∈(λ,1]

(q − λ) dα (q)

]
sH(24)
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LEMMA 8: If
{
{α (·|λ)}λ∈[0,1] , Ū

S (0)
}

is a solution to program (P̃stoch), then

for all λ, α∆ (λ|λ) + α∆ (1|λ) = 1.

PROOF:
Let {α∗ (·|λ)}λ∈[0,1] be a solution to program (P̃stoch). Let {α̂ (·|λ)}λ∈[0,1] be an-

other mechanism where α̂∆ (λ|λ) = α∗ (λ|λ) and α̂∆ (1|λ) = ᾱ∗ (λ|λ). Given the
expression in equation (24), it is immediate that S̄ (α̂ (·|λ) , λ) ≥ S̄ (α∗ (·|λ) , λ),
with the inequality holding strictly if α∗ (·|λ) 6= α̂ (·|λ). Next, since ¯̂α (λλ) =
ᾱ (λ|λ), from equation (23), ψ̄B (α̂ (·|λ) , λ) − ψ̄B (α∗ (·|λ) , λ) = S̄ (α̂ (·|λ) , λ) −
S̄ (α∗ (·|λ) , λ), which is positive from above. Therefore, if α∗ (·|λ) 6= α̂ (·|λ) for a
positive measure of λ, by Lemma 7, {α∗ (·|λ)}λ∈[0,1] cannot be part of a solution

to program (P̃stoch).
Henceforth, without loss of generality, we can restrict attention to only {α (·|λ)}λ∈[0,1]

with the property that α∆ (λ|λ) + α∆ (1|λ) = 1.

LEMMA 9: Under Condition (4), if
{
{α (·|λ)}λ∈[0,1] , Ū

S (0)
}

is a solution to

program (20), then it must the case that for all λ, α∆ (λ|λ) = 1 or α∆ (1|λ) = 1.

PROOF:
Suppose, for a contradiction, that the statement of the lemma does not hold

— i.e., letting {α∗ (·|λ)}λ∈[0,1] be a solution to program (P̃stoch), there exists an

interval [λ1, λ2] such that α∗∆ (λ|λ) , α∗∆ (1|λ) ∈ (0, 1) for all λ. Let λo = λ1+λ2
2 ,

and for λ ∈ [λ1, λ
o], let ζ (λ) = λo + λ− λ1. Therefore, (ζ (λ1) , ζ (λo)] = (λo, λ2]

and ζ (λ) > λ.
Let k = minλ∈[λ1,λo] α

∆ (λ|λ), and choose an ε ∈ (0, k). For λ ∈ (λ1, λ
o), define

η (λ) as follows:

[1− F (λ)] ε = [1− F (ζ (λ))] η (λ)

=⇒ η (λ) = [1−F (λ)]ε
1−F (ζ(λ)) .

We choose ε small enough such that η (λ) < minλ∈[λo,λ2] 1− α∗∆ (1|λ) .
Consider the schedule {α̂ (·|λ)}λ∈[0,1], where α̂ (·|λ) = α∗ (·|λ) for all λ /∈

[λ1, λ
o) ∪ (λo, λ2], and

for λ ∈ [λ1, λ
o), α̂ (λ|λ) = α∗ (λ|λ) + ε ; α̂ (1|λ) = α∗ (1|λ)− ε

for λ ∈ (λo, λ1], α̂ (λ|λ) = α∗ (λ|λ)− η
(
ζ−1 (λ)

)
; α̂ (1|λ) = α∗ (1|λ) + η

(
ζ−1 (λ)

)
In words, a type λ ∈ [λ1, λ

o) is paired with a type ζ (λ) ∈ (λo, λ2], where ζ is
bijective. {α̂ (·|λ)}λ∈[0,1] is constructed as follows: for each λ ∈ [λ1, λ

o), there is

an increase of probability ε for α∗ (λ|λ) (and a decrease of ε for α̂ (λ|λ)); and for
its “paired” type ζ (λ), there is an increase of probability η (λ) for α∗ (1|ζ (λ))
(and a decrease of η (λ) for α̂ (ζ (λ) |ζ (λ))).
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Note that ᾱ∗ (λ|λ) = α∗∆ (1|λ) and ¯̂α (λ|λ) = α̂∆ (1|λ). Therefore,∫ λ2

λ1

¯̂α (1|λ) [1− F (λ)] dλ

=

∫ λo

λ1

α̂∆ (1|λ) [1− F (λ)] dλ+

∫ λ2

λo
α̂∆ (1|λ) [1− F (λ)] dλ

=

∫ λo

λ1

α̂∆ (1|λ) [1− F (λ)] dλ+

∫ λo

λ1

α̂∆
(
1|ζ−1 (λ)

)
[1− F (ζ (λ))] dλ

=

∫ λo

λ1

(
α∗∆ (1|λ)− ε

)
[1− F (λ)] +

[
α∗∆ (1|ζ (λ)) + η (λ)

]
[1− F (ζ (λ))] dλ

=

∫ λo

λ1

[
α∗∆ (1|λ) + α∗∆ (1|ζ (λ))

]
[1− F (λ)] dλ+

∫ λo

λ1

[[1− F (λ)] ε+ [1− F (ζ (λ))] η (λ)] [1− F (λ)] dλ

=

∫ λ2

λ1

α∗∆ (1|λ) [1− F (λ)] dλ.

This implies that
(25)∫ λ2

λ1

ψ̄B (α̂ (·|λ) , λ) dλ−ψ̄B (α∗ (·|λ) , λ) dλ =

∫ λ2

λ1

[
S̄ (α̂ (·|λ))− S̄ (α∗ (·|λ))

]
f (λ) dλ.

Next, similar to above,∫ λ2

λ1

(1− λ) f (λ) α̂∆ (1|λ) dλ

=

∫ λo

λ1

(1− λ) f (λ) α̂∆ (1|λ) + (1− ζ (λ)) f (ζ (λ)) α̂∆ (1|ζ (λ)) dλ

=

∫ λo

λ1

(1− λ) f (λ)
[
α̂∆ (1|λ)− ε

]
+
[
(1− ζ (λ)) f (ζ (λ))

[
α̂∆ (1|ζ (λ)) + η (λ)

]]
dλ

=

∫ λ2

λ1

(1− λ) f (λ)α∗∆ (1|λ) dλ

+

∫ λo

λ1

(1− ζ (λ)) f (ζ (λ)) η (λ)− (1− λ) f (λ) ε dλ

(26)
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Observe that

(1− ζ (λ)) f (ζ (λ)) η (λ) =
(1− ζ (λ)) f (ζ (λ))

1− F (ζ (λ))
[1− F (λ)] ε

>
(1− λ) f (λ)

1− F (λ)
[1− F (λ)] ε = (1− λ) f (λ) ε,

where the inequality is because of Condition (4). Therefore, the line in (26) is
strictly positive, meaning that∫ λ2

λ1

(1− λ) f (λ) α̂∆ (1|λ) dλ >

∫ λ2

λ1

(1− λ) f (λ)α∗∆ (1|λ) dλ.

This implies that∫ λ2

λ1

[
S̄ (α̂ (·|λ))− S̄ (α∗ (·|λ))

]
f (λ) dλ

=

∫ λ2

λ1

(1− λ)
[
α̂∆ (1|λ)− α∗∆ (1|λ)

]
sHf (λ) dλ > 0.

Therefore, from equation (25),
∫ λ2
λ1
ψ̄B (α̂ (·|λ) , λ) dλ−ψ̄B (α∗ (·|λ) , λ) dλ > 0. By

Lemma 7, {α∗ (·|λ)}λ∈[0,1] cannot be part of a solution to program (P̃stoch), which
is a contradiction.

Henceforth, without loss of generality, we can restrict attention to only {α (·|λ)}λ∈[0,1]

with the property that either α∆ (λ|λ) = 1 or α∆ (1|λ) = 1.

LEMMA 10: Under Condition (4), if
{
{α (·|λ)}λ∈[0,1] , Ū

S (0)
}

is a solution to

program (P̃stoch), there must exist x such that α∆ (λ|λ) = 1 for all λ < x and
α∆ (1|λ) = 1 for all λ ≥ x.

PROOF:

Let {α∗ (·|λ)}λ∈[0,1] be a solution to program (P̃stoch). Suppose, for a contradic-
tion, that the statement of the lemma does not hold. This implies that there exist
λ1 < λ2 < λ3 < 1 such that α∗∆ (1|λ) = 1 for all λ ∈ [λ1, λ2) but α∗∆ (λ|λ) = 1
for all λ ∈ [λ2, λ3]. For x ∈ [λ1, λ1 + ε] , define φ (x) by

(27)

∫ φ(x)

x
1− F (λ) dλ =

∫ λ2

λ1

1− F (λ) dλ.

Pick ε such that φ (λ1 + ε) = λ3. Equation (27) implies that φ′ (x) = 1−F (x)
1−F (φ(x)) .
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Let

D (x) :=

∫ φ(x)

x
(1− λ) f (λ) dλ

=⇒ D′ (x) = [1− φ (x)] f (φ (x))φ′ (x)− (1− x) f (x)

= [1− φ (x)] f (φ (x))
1− F (x)

1− F (φ (x))
− (1− x) f (x)

∝ [1− φ (x)] f (φ (x))

1− F (φ (x))
− (1− x) f (x)

1− F (x)
≥ 0,

where the inequality is due to Condition (4) and is strict if x > λ1. Thus,

(28)

∫ λ3

λ1+ε
(1− λ) f (λ) dλ = D (λ1 + ε) > D (λ1) =

∫ λ2

λ1

(1− λ) f (λ) dλ.

Consider the schedule {α̂ (·|λ)}λ∈[0,1] where α̂ (·|λ) = α∗ (·|λ) for all λ /∈ [λ1, λ3],

and α̂∆ (λ|λ) = 1 for all λ ∈ [λ, λ1 + ε), and α̂∆ (1|λ) = 1 for all λ ∈ [λ1 + ε, λ3].
Observe that ∫ λ3

λ1

[
S̄ (α̂ (·|λ))− S̄ (α∗ (·|λ))

]
f (λ) dλ

=

[∫ λ3

λ1+ε
(1− λ) f (λ) dλ−

∫ λ2

λ1

(1− λ) f (λ) dλ

]
sH > 0,

where the inequality is from equation (28). Additionally,∫ λ3

λ1

(
¯̂α (λ)− ᾱ∗ (λ)

)
[1− F (λ)] f (λ) dλ

=

∫ λ3

λ1+ε

¯̂α∆ (λ) [1− F (λ)] dλ−
∫ λ2

λ1

ᾱ∗∆ (λ) [1− F (λ)] dλ.

Thus,
∫ λ3
λ1
ψ̄B (α̂ (·|λ))−ψ̄B (α∗ (·|λ)) dλ =

∫ λ3
λ1

[
S̄ (α̂ (·|λ))− S̄ (α∗ (·|λ))

]
f (λ) dλ >

0. By Lemma 7, {α∗ (·|λ)}λ∈[0,1] cannot be part of a solution to program (P̃stoch),
which is a contradiction.

Finally, Proposition 4 is a corollary of Lemma 10.
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II. Online Appendix: Additional Results

A. On the Constrained Pareto Frontier

This subsection studies the curvature of the Pareto frontier. From Proposition
2, if the solution is of class A1, the frontier is Ŝ (0)−b, which has a constant slope

of −1. If the solution is of class A2 , the frontier is ψ̂S (λ∗ (b)).

LEMMA 11: Suppose that the density f is differentiable over (0, 1). For all b ∈(
E [v]− cH , b̄

)
, ψ̂S (λ∗ (b)) is twice differentiable with respect to b, and d2

db2
ψ̂S (λ∗ (b)) ≤

(≥) 0 if f(λ)(1−λ)
1−F (λ) is increasing (decreasing) at λ = λ∗ (b).

Observe that f(λ)(1−λ)
1−F (λ) is constant for the uniform distribution. This explains

why the slope of the Pareto frontier of the A2 allocations under the uniform
distribution is a constant. PROOF:

Let VS (b) = ψ̂S (λ∗ (b)). Twice differentiating VS (b), we have

VS′ (b) =− (cH − cL) [1− F (λ∗ (b))]λ∗
′
(b)

VS′′ (b) ∝f (λ∗ (b))
[
λ∗
′
(b)
]2
− [1− F (λ∗ (b))]λ∗

′′
(b)

(29) =⇒ VS′′ (b) ≤ 0 ⇐⇒ f (λ∗ (b))

1− F (λ∗ (b))
≤ λ∗

′′
(b)

[λ∗′ (b)]
2

Let ψ̂B (x) = Ŝ (x)− ψ̂S (x). Doing total differentiation twice on ψ̂B (λ∗ (b)) = b,

we have λ∗
′′

(b)

[λ∗′ (b)]
2 = − ψ̂B

′′
(λ∗(b))

ψ̂B′ (λ∗(b))
, where

ψ̂B
′
(λ) =− (1− λ) sHf (λ) + (cH − cL) [1− F (λ)]

ψ̂B
′′

(λ) =f (λ) [sH − cH + cL]− (1− λ) sHf
′ (λ)

Therefore, equation (29) holds if and only if

f (λ∗ (b))

1− F (λ∗ (b))
≤− ψ̂B

′′
(λ∗ (b))

ψ̂B′ (λ∗ (b))

ψ̂B
′
(λ∗ (b)) must be positive; if not, there exists x < λ∗ (b) in which ψ̂B (x) = b,

which contradicts the definition of λ∗ (b). When ψ̂B
′
(λ) = − (1− λ) sHf (λ) +
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(cH − cL) [1− F (λ)] ≥ 0,

f(λ)
1−F (λ) ≤ −

f(λ)[sH−cH+cL]−(1−λ)sHf
′(λ)

−(1−λ)sHf(λ)+(cH−cL)[1−F (λ)]

⇐⇒ f (λ) [1− F (λ)] ≤ [1− F (λ)] (1− λ) f ′ (λ) + (1− λ) [f (λ)]2

⇐⇒ 1
1−λ ≤

f ′(λ)
f(λ) + f(λ)

1−F (λ)

⇐⇒ − d
dλ log (1− λ) ≤ d

dλ log f (λ)− d
dλ log (1− F (λ))

⇐⇒ d
dλ log

[
f(λ)(1−λ)

1−F (λ)

]
≥ 0

⇐⇒
[

1−F (λ)
f(λ)(1−λ)

]
× d

dλ

[
f(λ)(1−λ)

1−F (λ)

]
≥ 0

Since f(λ)(1−λ)
1−F (λ) > 0, the last line is equivalent to d

dλ

[
f(λ)(1−λ)

1−F (λ)

]
≥ 0.

B. The Monopsonist’s Screening Problem

The mechanism implementing the buyer-optimal SB allocation is also a solution
to the problem of a monopsonist who can offer a menu of trade contracts to screen
the seller. However, although the mechanism that attains the buyer-optimal SB
allocation is unique, the solution to the monopsonist’s problem is not necessarily
unique. This is because it is possible that the monopsonist can obtain the buyer-
optimal second best utility (b̄) while giving the seller a lower expected utility than
what she gets under the buyer-optimal SB allocation.

In this section, we specifically study the monopsonist’s screening problem in
our model. We fully characterize the set of optimal screening mechanisms (which
includes the mechanism in Proposition 2 for b = b̄) and show that the quan-
tity schedules of all the optimal screening mechanisms are still always threshold
schedules. Moreover, this property holds even if f/ (1− F ) is not monotonic.

Henceforth, assume that F still admits a density f , but f/ (1− F ) is not nec-
essarily increasing. The monopsonist’s problem is

max
q(·),t(·)

∫ 1
0 U

B (λ) f (λ) dλ, s.t. (ICS) and (IRS).

Using a similar argument to Lemma 1, the problem becomes

(30) max
nondecreasing q(·)

∫ 1

0
ψB (q (λ) , λ) dλ.

LEMMA 12: If q∗ (·) is a solution to program (30), q∗ (·) must be a threshold
schedule.

PROOF:
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Suppose that q∗ (·) is a solution to program (30). It is straightforward to observe
that the properties in Lemma 5 hold. Therefore, we only have to prove that
λ2 = 1. Suppose, for a contradiction, that λ2 < 1. There must then exist
λ3 > λ2 such q∗ (λ) = λ for all λ ∈ [λ2, λ3]. Pick some ε > 0 such that ε <
max {λ3 − λ2, λ2 − λ1}. For any x ∈ [λ2 − ε, λ2 + ε], define the schedule q̃x (·) as
follows:

(31) q̃x (λ) =


x , if λ ∈ [λ1, x)

λ , if λ ∈ [x,λ3)

q∗ (λ) , if λ /∈ [λ1, λ3)

Note that q̃x (·) is also a nondecreasing schedule. Next, let ξ (x) :=
∫ 1

0 ψ
B (q̃x (λ) , λ) f (λ) dλ

be the objective value under schedule q̃x (·). Therefore,

ξ (x) =

∫
λ/∈[λ1,λ3)

ψB (q∗ (λ) , λ) f (λ) dλ+ +

∫ λ3

x
λsL︸︷︷︸

ψB(λ,λ)

f (λ) dλ

+

∫ x

λ1

(
xsL + (x− λ) (sH − sL)− (cH − cL)

1− F (λ)

f (λ)

)
︸ ︷︷ ︸

ψB(x,λ)

f (λ) dλ

The first two derivatives of ξ (x) are

ξ′ (x) =− (cH − cL) [1− F (x)] + [F (x)− F (λ1)] sH .

ξ′′ (x) =f (x) [(cH − cL) + sH ] > 0.

Since q̃λ2 (·) is the optimal schedule q∗ (·), x = λ2 must be a local maximizer.
However ξ′′ (λ2) is strictly positive — contradiction. Therefore, λ2 must be 1.

By Lemma 12, we can restrict our search for the optimal quantity schedule to
threshold schedules. Under the threshold-x quantity schedule, the value of the
objective function is

ψ̂B (x) :=

∫ x

0
ψB (λ, λ) f (λ) dλ+

∫ 1

x
ψB (1, λ) f (λ) dλ

=

∫ 1

0
λsLf (λ) dλ +

∫ 1

x

[
(1− λ) sH − (cH − cL)

1− F (λ)

f (λ)

]
f (λ) dλ.(32)

Let R (λ) := (1−λ)f(λ)
1−F (λ) .
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PROPOSITION 5: The monopsonist’s optimal menus of contracts is

(q∗ (λ) , t∗ (λ)) =

{
(λ, λcL) , ∀λ < λB(
1, C

(
1, λB

))
, ∀λ ≥ λB

,

where λB ∈ arg max
x

ψ̂B (x). The buyer’s equilibrium expected utility is ψ̂B
(
λB
)
.

If λB 6= 0, 1, then λB must satisfy R
(
λB
)

= cH−cL
sH

.

• If R (λ) is strictly decreasing in λ for all λ ∈ (0, 1), then λB is either 0 or
1.

• If R (λ) is strictly increasing in λ for all λ ∈ (0, 1), then λB is unique,
and the optimal schedule is the pointwise optimal schedule — i.e., q∗ (λ) =
arg maxq ψ

B (q, λ) for all λ.

The first-order condition of maxx ψ̂
B (x) is R (λ) = cH−cL

sH
; thus, this is a neces-

sary condition for an interior optimal threshold. If R (λ) is decreasing, ψ̂B (x) is
quasiconvex, hence leading to a corner solution. In contrast, if R (λ) is increasing,
the pointwise optimum of ψB (·, λ) is nondecreasing, which means that it is the
unique optimum.
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