Multigame Contact: A Double-Edged Sword for Cooperation

Vincent Laferrière UNIL
Joao Montez Unil
Catherine Roux Uni Basel
Christian Thöni unil

Cooperation in prisoner's dilemmas

Cooperation in indefinitely repeated prisoner's dilemmas has received a lot of attention in recent years.
What are the determinants of cooperation?

- Continuation probability (Dal Bó, 2005)
- Communication (Cooper/Kühn, 2014)
- Information and monitoring (Aoyagi/Bhaskar/Fréchette, 2019)
- Costly punishment (Dreber/Rand/Fudenberg/Nowak, 2008)
- Continuous time (Bigoni/Casari/Skrzypacz/Spagnolo, 2015)
- Realized duration (Mengel/Orlandi/Weidenholzer, 2022)
- Matching scheme (Duffy/Ochs, 2009)
- Behavioral spillovers (Bednar/Chen/Liu/Page, 2012)
- Literature review: Dal Bó/Fréchette (2018)

Strategic importance of multigame contact

Agents often interact across multiple games:

- Coworkers may be neighbours.
- Spouses may be business partners.
- Nations may link negotiations on political and economic fronts.
\rightarrow We know what to expect!
Multimarket contact (Bernheim/Whinston, 1990):
- Enhances a firm's ability to punish deviations (link the markets).
- It can help collusion, and never hurts.
- It always helps when objective functions are concave (Spagnolo, 1999).

Experimental setup and predictions

Hard game

	C	D
C	C	135,135
	$45, \underline{216}$	
D	$\underline{216}, 45$	$\underline{60}, \underline{60}$

Easy game

	c	d
$c \mid$	c	
	135,135	$45, \underline{144}$
d	$\underline{144}, 45$	$\underline{60}, \underline{60}$

$$
\frac{135}{1-\delta} \geq 216+\frac{\delta 60}{1-\delta} \Leftrightarrow \delta \geq 0.52 \equiv \tilde{\delta}_{\text {hard }} \quad \delta \geq 0.11 \equiv \tilde{\delta}_{\text {easy }}
$$

$$
\frac{2 \cdot 135}{1-\delta} \geq 216+144+\frac{2 \cdot \delta 60}{1-\delta} \Leftrightarrow \delta \geq 0.38 \equiv \tilde{\delta}_{p o o l}
$$

Treatment variations

Multigame contact (between subjects)

- 2Partner: play each of the two games with a different partner
- 1Partner: play both games with a single partner

Decision Screen

Continuation probability (between subjects)

- $\delta=0.1$
- $\delta=0.5$
- $\delta=0.9$

Experimental procedures

- Laboratory experiment in the LABEX, University of Lausanne
- Pilot in May 2020, (preregistered) experiments in Sept/Oct
- Experimental software: oTree (Chen et al., 2016)
- 23 sessions with a total of 436 participants, student subjects

\# partners	$\delta=0.1$		$\delta=0.5$		$\delta=0.9$	
	1	2	1	2	1	2
\# sessions	3	6	3	6	2	3
\# matching groups	6	6	6	6	5	5
\# subjects	60	116	58	114	34	54
\# decisions	6,030	11,754	5,924	11,574	3,752	5,800

Session details

Matching procedure:

- All subjects in one session play the same treatment.
- Interaction with subjects of the same matching group only
- Random allocation to matching groups of varying sizes (6 to 20 subjects)
- Idea: keep \# interactions with another subject comparable
- Consequence: smaller group size for 1Partner and high δ

Stopping procedure and supergame duration:

- Each supergame lasts at least three rounds
- Computerized stopping rule with probability $1-\delta$ after round 3
- Predrawn sequences of supergames up to 100 rounds
- Independent sequences across matching groups within a session
- Same sequence within matching groups

Does multigame contact increase cooperation?

Do subjects link the games (I)?

Partner's or partners' decisions in $t-1$

Does multigame contact lead to more extreme outcomes?

Study 2: Powering multigame contact

	Hard game	
C	D	
C	135,135	$45, \underline{216}$
D	$\underline{216}, 45$	$\underline{60}, \underline{60}$

Easy game

	c	d
$c \mid$	c	
	135,135	$45, \underline{144}$
d	$\underline{144}, 45$	$\underline{60}, \underline{60}$

Sequential: Subjects play the hard game first, learn the outcome, proceed with the easy game.

$$
\frac{2 \cdot 135}{1-\delta} \geq 135+144+\frac{2 \cdot \delta 60}{1-\delta} \Leftrightarrow \delta \geq 0.06 \equiv \tilde{\delta}_{p o o l}^{\text {seq }}
$$

Study 2: Results

Predictions: unchanged in 2Partner; $\tilde{\delta}_{\text {pool }}^{\text {seq }}=0.06$ in 1Partner Parameters: $\delta=0.5, n=128$

Cooperation rates

Outcome of the stage games

Do subjects link the games (II)?

	Dep. var.: cooperation in easy $\left(c_{t}\right)$		
	(1)	(2)	(3)
2 Partner	0.052	$0.073^{* *}$	0.010
	(0.044)	(0.018)	(0.037)
$(C, C)_{t}$ [coop. outcome in hard]		$0.205^{* *}$	$0.519^{* *}$
		(0.046)	(0.046)
$(C, C)_{t} \times 2$ Partner		$-0.408^{* *}$	
			(0.046)
$(c, c)_{t-1}$ [coop. outcome in easy]		$0.492^{* *}$	$0.186^{* *}$
		(0.048)	(0.054)
$(c, c)_{t-1} \times 2$ Partner		$0.383^{* *}$	
		(0.066)	
Constant	$0.487^{* *}$	$0.140^{* *}$	$0.196^{* *}$
Time controls	(0.057)	(0.023)	(0.028)

Conclusion

- Experimental evidence on the effect of multigame contact on cooperation is incomplete.
- In theory, cooperation should increase. But we find that multigame contact is a double-edged sword: full cooperation becomes more frequent, but so does full defection.
- As a result, the effect of multigame contact averages out.
- We find evidence for strategic linkage under multigame contact. And the adverse effect of linkage materializes as players sometimes resort to uncooperative behavior in one game.
- Our findings challenge the idea that linking independent policy issues cannot harm global cooperation.
- Interesting variations: imperfect monitoring, information that allows for reputation-building, pairing with other games

Experimental evidence

- Market games: does multimarket contact between firms increase collusion?
- Phillips/Mason (1992, 1996) - infinitely repeated Cournot; Cason/Davis (1995) - infinitely repeated Bertrand; Güth/Häger/Kirchkamp/Schwalbach (2016) - finitely repeated Bertrand; Freitag/Roux/Thöni (2021) - finitely repeated Cournot; Feinberg/Sherman $(1985,1988)$ - one shot Bertrand
- Prisoner's dilemma games: do multiple contacts increase cooperation?
- Yang/Kawamura/Ogawa (2016) - playing one versus playing two games and $\delta=0.75$; Modak (2022) $-\delta=0.75$ and asymmetric games
- Our experiment: playing two games with the same versus with a different partner in each with varying continuation probability.

Decision Screen

Manche 2

Période dans la manche: 1

Decision Screen

Manche 2

Période dans la manche: 1

Manche 2	
Vous Part.	

Votre		Choix du partenaire	
		A	B
	A	135, 135	45, 144
choix	B	144, 45	60, 60

Back

Cooperation rates over time

