Multigame Contact: A Double-Edged Sword for Cooperation

·/··//min

Vincent Laferrière UNIL Joao Montez UNIL Catherine Roux Uni Basel Christian Thöni UNIL

Cooperation in prisoner's dilemmas

Cooperation in indefinitely repeated prisoner's dilemmas has received a lot of attention in recent years.

What are the determinants of cooperation?

- Continuation probability (Dal Bó, 2005)
- Communication (Cooper/Kühn, 2014)
- Information and monitoring (Aoyagi/Bhaskar/Fréchette, 2019)
- Costly punishment (Dreber/Rand/Fudenberg/Nowak, 2008)
- Continuous time (Bigoni/Casari/Skrzypacz/Spagnolo, 2015)
- Realized duration (Mengel/Orlandi/Weidenholzer, 2022)
- Matching scheme (Duffy/Ochs, 2009)
- Behavioral spillovers (Bednar/Chen/Liu/Page, 2012)
- Literature review: Dal Bó/Fréchette (2018)

Strategic importance of multigame contact

Agents often interact across multiple games:

- Coworkers may be neighbours.
- Spouses may be business partners.
- Nations may link negotiations on political and economic fronts.
- \rightarrow We know what to expect!

Multimarket contact (Bernheim/Whinston, 1990):

- Enhances a firm's ability to punish deviations (link the markets).
- It can help collusion, and never hurts.
- It always helps when objective functions are concave (Spagnolo, 1999).

Experimental evidence

Experimental setup and predictions

$$\frac{135}{1-\delta} \geq 216 + \frac{\delta 60}{1-\delta} \Leftrightarrow \delta \geq 0.52 \equiv \tilde{\delta}_{\textit{hard}} \qquad \delta \geq 0.11 \equiv \tilde{\delta}_{\textit{easy}}$$

$$\frac{2\cdot 135}{1-\delta} \geq 216 + 144 + \frac{2\cdot \delta 60}{1-\delta} \Leftrightarrow \delta \geq 0.38 \equiv \tilde{\delta}_{\textit{pool}}$$

Treatment variations

Multigame contact (between subjects)

- > 2Partner: play each of the two games with a different partner
- ▶ 1Partner: play both games with a single partner

Decision Screen

Continuation probability (between subjects)

- $\delta = 0.1$
- ▶ δ = 0.5

Experimental procedures

- Laboratory experiment in the LABEX, University of Lausanne
- Pilot in May 2020, (preregistered) experiments in Sept/Oct
- Experimental software: oTree (Chen et al., 2016)
- 23 sessions with a total of 436 participants, student subjects

	$\delta = 0.1$		$\delta = 0.5$		$\delta = 0.9$	
# partners	1	2	1	2	1	2
# sessions	3	6	3	6	2	3
# matching groups	6	6	6	6	5	5
# subjects	60	116	58	114	34	54
# decisions	6,030	11,754	5,924	11,574	3,752	5,800

Session details

Matching procedure:

- ► All subjects in one session play the same treatment.
- Interaction with subjects of the same matching group only
- Random allocation to matching groups of varying sizes (6 to 20 subjects)
 - ▶ Idea: keep # interactions with another subject comparable
 - Consequence: smaller group size for *1Partner* and high δ

Stopping procedure and supergame duration:

- Each supergame lasts at least three rounds
- \blacktriangleright Computerized stopping rule with probability 1 δ after round 3
- Predrawn sequences of supergames up to 100 rounds
 - Independent sequences across matching groups within a session
 - Same sequence within matching groups

Does multigame contact increase cooperation?

Dynamics

Do subjects link the games (I)?

Partner's or partners' decisions in t - 1

Does multigame contact lead to more extreme outcomes?

Study 2: Powering multigame contact

Sequential: Subjects play the *hard* game first, learn the outcome, proceed with the *easy* game.

$$\frac{2\cdot 135}{1-\delta} \geq 135 + 144 + \frac{2\cdot \delta 60}{1-\delta} \Leftrightarrow \delta \geq 0.06 \equiv \tilde{\delta}_{\textit{pool}}^{\textit{seq}}$$

Study 2: Results

Predictions: unchanged in *2Partner*; $\tilde{\delta}_{pool}^{seq} = 0.06$ in *1Partner* Parameters: $\delta = 0.5$, n = 128

Do subjects link the games (II)?

	Dep. var.: cooperation in easy (c_t)			
—	(1)	(2)	(3)	
2Partner	0.052	0.073**	0.010	
	(0.044)	(0.018)	(0.037)	
$(C, C)_t$ [coop. outcome in hard]		0.205**	0.519**	
		(0.046)	(0.046)	
$(C,C)_t \times 2Partner$			-0.408**	
			(0.046)	
$(c,c)_{t-1}$ [coop. outcome in <i>easy</i>]		0.492**	0.186**	
		(0.048)	(0.054)	
$(c,c)_{t-1} \times 2Partner$. ,	0.383**	
			(0.066)	
Constant	0.487**	0.140**	0.196**	
	(0.057)	(0.023)	(0.028)	
Time controls	Yes	Yes	Yes	

Conclusion

- Experimental evidence on the effect of multigame contact on cooperation is incomplete.
- In theory, cooperation should increase. But we find that multigame contact is a double-edged sword: full cooperation becomes more frequent, but so does full defection.
- ► As a result, the effect of multigame contact averages out.
- We find evidence for strategic linkage under multigame contact. And the adverse effect of linkage materializes as players sometimes resort to uncooperative behavior in one game.
- Our findings challenge the idea that linking independent policy issues cannot harm global cooperation.
- Interesting variations: imperfect monitoring, information that allows for reputation-building, pairing with other games

Experimental evidence

- Market games: does multimarket contact between firms increase collusion?
 - Phillips/Mason (1992, 1996) infinitely repeated Cournot; Cason/Davis (1995) – infinitely repeated Bertrand; Güth/Häger/Kirchkamp/Schwalbach (2016) – finitely repeated Bertrand; Freitag/Roux/Thöni (2021) – finitely repeated Cournot; Feinberg/Sherman (1985, 1988) – one shot Bertrand
- Prisoner's dilemma games: do multiple contacts increase cooperation?
 - ▶ Yang/Kawamura/Ogawa (2016) playing one versus playing two games and $\delta = 0.75$; Modak (2022) $\delta = 0.75$ and asymmetric games
- Our experiment: playing two games with the same versus with a different partner in each with varying continuation probability.

Decision Screen

Decision Screen

Back

Cooperation rates over time

Back