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1 Introduction

One of the most successful empirical relationships in international trade is the gravity equation, which relates bilateral

trade between an origin and destination to bilateral frictions, origin characteristics, and destination characteristics. A

key decision for researchers in estimating this relationship is the level of aggregation, since the gravity equation is log

linear, whereas aggregation involves summing the level rather than the log level of trade �ows. Therefore, Jensen’s

inequality would appear to imply that if a log-linear gravity equation holds at one level of aggregation, it cannot in

general also hold at another level of aggregation. In such circumstances, estimating the gravity equation at another

level of aggregation can be interpreted at best as providing a log-linear approximation to the true relationship at

this other level of aggregation. This problem is compounded, because there is little consensus in existing theoretical

research about the appropriate level of aggregation at which the gravity equation holds. Some models derive this

relationship at the aggregate level, while others predict that it holds at the sectoral level, and yet others imply that

is holds at an even more disaggregated level below sectors. Mirroring this theoretical ambiguity, researchers have

estimated the gravity equation using aggregate, sector and even �rm-level data, and �nd that it provides a reasonable

approximation to the data at each of these levels of aggregation.

In this paper, we use the nested constant elasticity of substitution (CES) demand system to show that a log-

linear gravity equation holds exactly at each nest of utility. In particular, we use the independence of irrelevant

alternatives (IIA) properties of CES to derive an exact Jensen’s inequality correction term for aggregation across the

nests of utility. Choosing the aggregate economy and sectors as our nests of utility, we estimate gravity equations

at both the sectoral and aggregate level, and show how to aggregate exactly from the sectoral to the aggregate level.

We decompose the e�ect of distance on bilateral trade in the aggregate gravity equation into the contribution of a

number of di�erent terms from the sectoral gravity equations: (i) origin �xed e�ects; (ii) destination �xed e�ects;

(iii) distance; (iv) our Jensen’s inequality or composition term; and (v) the error term. We show that our composition
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term makes a quantitatively relevant contribution towards the aggregate e�ect of distance. Although we choose the

aggregate economy and sectors as our two nests of utility, our theoretical results hold for any de�nition and number

of nests with the CES demand system. Therefore, our analysis also encompasses, for example, regions and �rms as

other possible levels of aggregation.
1

Finally, although for brevity we focus on the gravity equation for international

trade, our analysis also goes through for other applications of gravity equations in economics with a nested demand

structure, including but not limited to migration, commuting and �nancial �ows.

Our paper is related to a voluminous theoretical literature on the gravity equation in international trade, as re-

cently surveyed in Anderson (2011) and Head and Mayer (2014). In early empirical research following Tinbergen

(1962), the gravity equation was found to be empirically successful in explaining observed trade data, but lacked rig-

orous theoretical microfoundations. More than �fty years later, we have an abundance rather than a scarcity of these

theoretical microfoundations, with an entire class of models that are isomorphic in terms of their gravity equation

predictions, as emphasized in Arkolakis, Costinot, and Rodriguez-Clare (2012) and Allen, Arkolakis, and Takahashi

(2018). This class of models includes neoclassical theories with perfect competition and constant returns to scale

(e.g. Deardor� 1998 and Eaton and Kortum 2002), Armington models with di�erentiation by country of origin (e.g.

Anderson and van Wincoop 2003), “new trade” theory models with monopolistic competition and increasing returns

to scale (e.g. Krugman 1980), “new new trade” theory models with heterogeneous �rms, monopolistic competition

and increasing returns to scale (e.g. Melitz 2003 with an untruncated Pareto productivity distribution, as in Chaney

2008 and Arkolakis, Demidova, Klenow, and Rodriguez-Clare 2008), and models of buyer-seller networks (e.g. Chaney

2018). Our main theoretical contribution relative to this literature is to show that a log-linear gravity equation holds

exactly at each level of aggregation in a nested CES demand system and to characterize the properties of the error

term at each of these levels of aggregation.

Our paper also contributes to an equally-large body of empirical research that has found the gravity equation

to provide a good approximation to observed bilateral trade data. Much of this research has estimated the gravity

equation using data on aggregate bilateral trade between countries, exploring a whole range of di�erent bilateral trade

frictions, including distance, common borders and common currencies along many others (as in Redding and Venables

2004 and the survey by Head and Mayer 2014). Another in�uential line of research has estimated the gravity equation

using more disaggregated data, including sectors, regions within countries, and even �rms (e.g. Davis and Weinstein

1999, Head and Ries 2001, Feenstra, Markusen, and Rose 2001, Combes, Lafourcade, and Mayer 2005, Bernard, Redding,

and Schott 2011, Berthelon and Freund 2008 and Bas, Mayer, and Thoenig 2017).

Great progress has been made in this empirical literature in addressing a number of challenges in estimating the

gravity equation, including the presence of zeros in international trade �ows (e.g. Santos Silva and Tenreyro 2006), the

role of the extensive versus the intensive margins of trade (e.g. Helpman, Melitz, and Rubinstein 2008) and the need

to control for changes in multilateral resistance in undertaking counterfactuals for changes in bilateral trade frictions

(e.g. Anderson and van Wincoop 2003). One remaining empirical challenge is the choice of the appropriate level

of aggregation at which to estimate the gravity equation, as considered in the context of aggregating from regions

to countries in Ramondo, Rodríguez-Clare, and Saborio (2016) and Coughin and Novy (2018), and in the context of

Ricardian models of trade in Lind and Ramondo (2018). This empirical challenge is an example of the more general

1
Whereas we focus on gravity equation estimation for sectoral and aggregate trade, Redding and Weinstein (2018) develop a theoretical frame-

work for aggregating from millions of trade transactions on individual �rms and products to national trade and welfare using data on the value of

trade and unit values.
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Modi�able Area Unit Problem (MAUP) in the statistics literature following Gehlke and Biehl (1934) and Fotheringham

and Wong (1991), whereby the results of statistical analyses need not be invariant to the scale at which these analyses

are undertaken. This empirical challenge is particularly severe for gravity equation estimation, because di�erent

theories yield di�erent predictions as to the scale at which the gravity equation holds, including for example the

aggregate economy in Eaton and Kortum (2002) and sectors in Costinot, Donaldson, and Komunjer (2012). Our main

empirical contribution relative to this literature is to develop a metric for assessing the impact of aggregation on

gravity equation estimates.

Finally, as noted above, our results also apply for other applications of the gravity equation in economics with a

nested demand structure, including for example migration (e.g. Kennan and Walker 2011), commuting (e.g. Ahlfeldt,

Redding, Sturm, and Wolf 2015, Monte, Redding, and Rossi-Hansberg 2018 and Heblich, Redding, and Sturm 2018),

and capital �ows (e.g. Martin and Rey 2004).

The remainder of the paper is structured as follows. In Section 2, we �rst develop our main theoretical result

that there is an exact Jensen’s inequality correction term such that a log-linear gravity equation holds at each level

of aggregation in a nested CES demand system. In Section 3, we estimate gravity equations at both the sectoral and

aggregate level. We use these estimates to decompose the e�ect of distance on bilateral trade in the aggregate gravity

equation into the contributions of di�erent terms from the sectoral gravity equations. Section 4 concludes.

2 Theoretical Framework

We consider a simple model of international trade across countries and sectors based on di�erentiation by origin

following Armington (1969). Although we choose this formulation for simplicity, our results hold for any international

trade model with a nested CES import demand system, including for example the multi-sector Ricardian model of

Costinot, Donaldson, and Komunjer (2012), a multi-sector version of Krugman (1980), and a multi-sector version of

Melitz (2003) with an untruncated Pareto productivity distribution.

2.1 Preferences

The world economy consists of a number of countries indexed by d, o ∈ Ω, where we use d as a mnemonic for

destination and o as a mnemonic for origin. The preferences of the representative consumer in each destination are

de�ned over consumption indexes (Cds) for a number of sectors indexed by s ∈ Ξ, where we use s as a mnemonic

for sector. The utility function is assumed to take the following constant elasticity of substitution (CES) form:

Ud =

[∑
s∈Ξ

(ΘdsCds)
σ−1
σ

] σ
σ−1

, σ > 1 (1)

where σ > 1 is the elasticity of substitution between sectors and Θds > 0 is the taste of the representative consumer

in destination d for sector s. Under our assumption that Θds > 0, the representative consumer in each country

consumes goods from all sectors.

The consumption index for destination d in sector s (Cds) is de�ned over the consumption of the output of each

origin o within that sector (cdos) and also takes the CES form:

Cds =

[ ∑
o∈Ωds

(θdoscdos)
νs−1
νs

] νs
νs−1

, νs > 1 (2)
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where νs > 1 is the elasticity of substitution across countries within sectors; we allow this elasticity of substitution to

di�er between sectors s; θdos ≥ 0 is the taste of the representative consumer in destination d for the goods produced

by origin o within sector s; and Ωds ⊆ Ω is the set of origins from which destination d consumes goods in sector s in

positive amounts.

We allow the tastes of the representative consumer for the goods within each sector to have a destination compo-

nent (ϕds), an origin component (ϕos), and a origin-destination component (ϕods) such that:

θdos = ϕdsϕosϕods. (3)

Using the properties of these CES preferences, equilibrium expenditure by destination d on the goods produced

by origin o within sector s (xdos) can be written as:

xdos =

(
pdos
θdos

)1−νs
XdsP

νs−1
ds , (4)

where pdos is the price in destination d of the goods produced by origin o in sector s; Xds =
[∑

o∈Ωds
xdos

]
is total

expenditure by destination d on sector s; and Pds is the price index dual to the consumption index in equation (2) for

destination d in sector s:

Pds =

[ ∑
o∈Ωds

(
pdos
θdos

)1−νs
] 1

1−νs

. (5)

In empirical gravity equation estimation, it is common to use datasets in which only data on trade with foreign

countries is reported. Therefore, we focus on the model’s predictions for trade with foreign countries, and use the

independence of irrelevant alternatives (IIA) property of CES to partition expenditure in each sector into expenditure

on domestic goods and expenditure on foreign goods. In particular, using this property of CES preferences, we have

the following equivalent expression for expenditure by destination d on the goods produced by origin o 6= d within

sector s (xdos):

xdos =

(
pdos
θdos

)1−νs
XdsPνs−1

ds , (6)

where pdos is the price in destination d of the goods produced by origin o in sector s; Xds =
[∑

o∈{Ωds:o 6=d} xdos

]
is

total expenditure by destination d on foreign origins o 6= dwithin sector s; we allow for the possibility that destination

d need not import from all foreign origins o 6= d within sector s, such that {Ωds : o 6= d} ⊆ Ω; and Pds is a price

index for foreign consumption for destination d in sector s that is de�ned as:

Pds =

 ∑
o∈{Ωds:o 6=d}

(
pdos
θdos

)1−νs
 1

1−νs

, (7)

and the following relationship holds:

Xds = Xds

(
Pds
Pds

)νs−1

=


∑
o∈{Ωds:o 6=d}

(
pdos
θdos

)1−νs

∑
o∈Ωds

(
pdos
θdos

)1−νs

Xds. (8)

2.2 Production

The good produced by each country in each sector is supplied under conditions of perfect competition and constant

returns to scale. Zero pro�ts implies that the “free on board” (fob) price of each origin’s good in each sector is equal
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to its unit cost of production:

pos = ηos, (9)

where ηos is a composite measure of unit cost, which could depend on the price of intermediate inputs and the prices

of multiple primary factors of production (left implicit here).

Trade between countries is subject to iceberg variable trade costs, such that τdos > 1 units of a good must be

shipped from origin o to destination d 6= o in order for one unit to arrive, where τdds = 1. Under these assumptions,

the “cost inclusive of freight” (cif) price in destination d of the good produced by origin o in sector s is:

pdos = τdospos = τdosηos. (10)

2.3 Sectoral Gravity

We now show that this multi-sector Armington model implies a log-linear sectoral gravity equation for bilateral trade

between destination d and origin o in each sector s for which there is positive trade. Combining CES import demand

from equation (6) with the pricing rule from equations (9) and (10), we obtain the following sectoral gravity equation

for the value of foreign trade between countries d and o 6= d within sector s:

xdos =

(
τdosηos
θdos

)1−νs
XdsPνs−1

ds . (11)

From this sectoral gravity equation, zero bilateral �ows (xdos = 0) can arise for two reasons in the model. First,

destination d may not import in sector s from origin o if bilateral trade costs are prohibitive (τdos → ∞). Second,

even if bilateral trade costs are non-prohibitive (τdos < ∞), destination d need not import in sectors s from origin o

if there is no demand for the goods produced by that origin in those sectors (θdos → 0).

Taking logarithms in equation (11) for all origin-destination-sector observations for which there is positive trade,

this sectoral gravity equation can be written as:

lnxdos = γos + λds − (νs − 1) ln τdos + udos, (12)

where γos is a �xed e�ect for origin o in sector s; λds is a �xed e�ect for destination d in sector s; and udos is a

stochastic error. The origin �xed e�ect (γos = (1− νs) [ln ηos − lnϕos]) controls for the unit cost of production and

the common origin-sector component of tastes across all destinations; the destination �xed e�ect (λds = lnXds+(νs−

1) [lnPds + lnϕds]) controls for destination sectoral import expenditure (Xds), the destination sectoral import price

index (Pds), and the common destination-sector component of tastes across all origins; and the stochastic error (udos =

lnϕdos) captures the idiosyncratic component of tastes (ϕdos) that is speci�c to an individual origin-destination-sector

observation, as de�ned in equation (3).

If bilateral trade is positive for all pairs of origins and destinations in all sectors (xdos > 0 for all d, o, s) and

bilateral trade costs (τdos) are observed, equation (12) can be estimated with a conventional �xed e�ects or least squares

dummy variables (LSDV) estimator. Under the identifying assumption that the stochastic error udos is orthogonal to

observed bilateral trade costs, this �xed e�ects estimator consistently estimates the sectoral trade elasticity (νs − 1).

More generally, if bilateral trade costs are not observed, they can be modelled as a function of a number of observed

bilateral characteristics and a stochastic error. Finally, if zero bilateral trade �ows occur, they could be correlated with

bilateral trade costs, and the presence of these zero trade �ows can be addressed using for example the Poisson �xed
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e�ects estimator of Santos Silva and Tenreyro (2006) or a Heckman selection correction as in Helpman, Melitz, and

Rubinstein (2008).

2.4 Aggregate Gravity

We now show that this multi-sector Armington model also implies a log-linear aggregate gravity equation between

each destination d and origin o. Aggregate foreign imports in destination d from origin o 6= d are the sum across

sectors s of imports from that origin in each sector:

Xdo =
∑
s∈Ξdo

xdos, o 6= d, (13)

where Ξdo ⊆ Ξ is the set of sectors in which destination d has positive imports from origin o 6= d.

At �rst sight, equations (12) and (13) appear inconsistent with the existence of a log-linear aggregate gravity

equation. The sectoral gravity equation (12) is log linear, whereas aggregate trade in equation (13) is the sum of the

level rather than the sum of the log level of sectoral trade. Therefore, Jensen’s inequality appears to imply that a log-

linear gravity equation cannot simultaneously hold at both the sectoral and aggregate level. However, we now use the

independence of irrelevant alternatives (IIA) properties of CES to derive an exact Jensen’s inequality correction term,

such that a log-linear gravity equation holds exactly at both the sectoral and aggregate levels, but the interpretation

of the error term in these equations di�ers across these two di�erent levels of aggregation.

As a �rst step, we rewrite destination d’s aggregate imports from origin o 6= d (Xdo) as equal to the sum across

sectors of the share of these imports in its total expenditure on all foreign imports (xdos/Xd) multiplied by its total

expenditure on all foreign imports (Xd):

Xdo =
∑
s∈Ξdo

xdos =
∑
s∈Ξdo

xdos
Xd
Xd =

[ ∑
s∈Ξdo

xdos∑
j∈{Ωd:j 6=d}

∑
r∈Ξdj

xdjr

]
Xd, (14)

where recall that Ξdo ⊆ Ξ is the set of sectors in which destination d has positive imports from origin o 6= d;

{Ωd : j 6= d} ⊆ Ω is the set of foreign origins j 6= d from which destination d imports; and destination d’s total

imports from all foreign origins are given by Xd =
[∑

j∈{Ωd:j 6=d}
∑
r∈Ξdj

xdjr

]
.

As a second step, we de�ne a measure of the importance of destination d’s imports from origin o 6= d in sector s

as a share of its imports from that origin across all sectors (Zdos):

Zdos ≡
xdos∑

r∈Ξdo
xdor

⇒

[ ∑
r∈Ξdo

xdor

]
=
xdos
Zdos

. (15)

This expression must hold for each sector s for which destination d has positive imports from origin o 6= d. Therefore,

taking logarithms of this relationship, and averaging across all these sectors s with positive imports from origin o to

destination d, we obtain:

ln

[ ∑
r∈Ξdo

xdor

]
=

[
1

NS
do

∑
s∈Ξdo

ln

(
xdos
Zdos

)]
, (16)

where NS
do = |Ξdo| is the number of sectors with positive trade between origin o and destination d.

As a third step, we de�ne a measure of the importance of destination d’s imports from country o 6= d in sector s

as a share of its imports across all foreign origins and sectors (Ydos):

Ydos ≡
xdos∑

j∈{Ωd:j 6=d}
∑
r∈Ξdj

xdjr
⇒

 ∑
j∈{Ωd:j 6=d}

∑
r∈Ξdj

xdjr

 =
xdos
Ydos

. (17)

6



Again this expression must hold for each sector s for which destination d has positive imports from origin o. Hence,

taking logarithms in this relationship, and averaging across all origins o and sectors s with positive imports to desti-

nation d, we obtain:

ln

 ∑
j∈{Ωd:j 6=d}

∑
r∈Ξdj

xdjr

 =

 1

NO
d

∑
o∈{Ωd:o 6=d}

1

NS
do

∑
s∈Ξdo

ln

(
xdos
Ydos

) , (18)

where NO
d = |{Ωd : o 6= d}| is the number of origins o with positive trade for destination d.

In a fourth step, we take logarithms in equation (14) for destination d’s imports from origin o 6= d (Xdo) and use

equations (16) and (18) to substitute for the two summation terms, which yields:

lnXdo =

[
1

NS
do

∑
s∈Ξdo

ln

(
xdos
Zdos

)]
−

 1

NO
d

∑
o∈{Ωd:o6=d}

1

NS
do

∑
s∈Ξdo

ln

(
xdos
Ydos

)+ lnXd. (19)

Using our sectoral gravity equation (12) to substitute for xdos in equation (19), we obtain the following log-linear

expression for aggregate bilateral trade between origin o and destination d:

lnXdo = Γdo + Λdo − Tdo + Jdo + Udo, (20)

where Γdo is an average of the origin-sector �xed e�ects (γos); Λdo is an average of the destination-sector �xed e�ects

(λds); Tdo captures the average e�ect of sectoral bilateral trade frictions ((νs−1) ln τdos); Jdo is our Jensen’s inequality

or composition term, which includes Zdos and Ydos, and controls for the di�erence between the mean of the logs and

the log of the means; and Udo is an average of the sectoral error terms (udos).

Each of these averages is taken across the sectors with positive trade between origin o and destination d and hence

varies bilaterally. In particular, Γdo equals the average origin-sector �xed e�ect (γos) across the set of sectors with

positive trade between destination d and origin o minus the average origin-sector �xed sector (γos) across all origins

and sectors for that destination:

Γdo ≡

 1

NS
do

∑
s∈Ξdo

γos −
1

NO
d

∑
o∈{Ωd:o 6=d}

1

NS
do

∑
s∈Ξdo

γos

 . (21)

Each of the other averages is de�ned analogously. Therefore, Λdo equals the average destination-sector �xed e�ect

(λds) across the set of sectors with positive trade between between destination d and origin o minus the average

destination-sector �xed sector (λds) across all origins and sectors for that destination:

Λdo ≡

 1

NS
do

∑
s∈Ξdo

λds −
1

NO
d

∑
o∈{Ωd:o 6=d}

1

NS
do

∑
s∈Ξdo

λds

 . (22)

Similarly, Tdo captures the average e�ect of sectoral trade costs ((νs−1) ln τdos) across the set of sectors with positive

trade between destination d and origin ominus the average e�ect of these sectoral trade costs ((νs−1) ln τdos) across

all origins and sectors for that destination:

Tdo ≡

 1

NS
do

∑
s∈Ξdo

(νs − 1) ln τdos −
1

NO
d

∑
o∈{Ωd:o6=d}

1

NS
do

∑
s∈Ξdo

(νs − 1) ln τdos

 . (23)

In contrast, our Jensen’s inequality or composition term (Jdo) depends on the average across sectors of the log import

share lnZdos for origin o and the average across origins and sectors of the log import share lnYdos:

Jdo ≡ lnXd +

 1

NO
d

∑
o∈{Ωd:o6=d}

1

NS
do

∑
s∈Ξdo

lnYdos −
1

NS
do

∑
s∈Ξdo

lnZdos

 . (24)
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Finally, Udo equals the average error term (udos) across the set of sectors with positive trade between destination d

and origin o minus the average error term (udos) across all origins and sectors for that destination:

Udo ≡

 1

NS
do

∑
s∈Ξdo

udos −
1

NO
d

∑
o∈{Ωd:o 6=d}

1

NS
do

∑
s∈Ξdo

udos

 . (25)

Therefore, in each case, a destination’s trade with a given origin depends on the average value of a variable with that

origin relative to its average value across all origins.

In a �fth and �nal step, we absorb the bilateral variation in the components Γdo, Λdo, Jdo and Udo into the

error term of our log-linear expression for aggregate bilateral trade, such that equation (20) can be re-written as the

following conventional aggregate gravity equation:

lnXdo = ηXo + µXd − V X ln τdo + wXdo. (26)

In this speci�cation, we de�ne the origin �xed e�ect (ηXo ) as the average across destinations of the bilateral component

Γdo from equation (21):

ηXo =
1

ND
o

∑
d∈{Ωo:d 6=o}

Γdo, (27)

which only varies by origin o. Similarly, we de�ne the destination �xed e�ect (µXd ) as the average across origins of

Λdo from equation (22):

µXd =
1

NO
d

∑
o∈{Ωd:o 6=d}

Λdo, (28)

which only varies by destination d.

Additionally, we include an aggregate measure of bilateral trade costs (τdo) together with a constant coe�cient

V X on this aggregate measure in equation (26). In our empirical work below, we proxy both sectoral and aggregate

bilateral trade costs using bilateral distance, which takes a common value across all sectors, although we allow the

coe�cient on this variable to vary across sectors in our sectoral gravity equations.

Both equations (20) and (26) hold simultaneously, because the error termwXdo includes (i) bilateral variation in Γdo;

(ii) bilateral variation in Λdo; (iii) heterogeneity in the average e�ect of sectoral trade costs ((νs − 1) ln τdos) across

origin-destination pairs depending on the set of sectors with positive trade; (iv) the Jensen’s inequality or composition

term; and (v) the error term Udo:

wXdo =

Γdo −
1

ND
o

∑
d∈{Ωo:d6=o}

Γdo

+

Λdo −
1

NO
d

∑
o∈{Ωd:o 6=d}

Λdo

− (Tdo − V X ln τdo
)

+ Jdo + Udo. (29)

In general, the properties of this composite error term (wXdo) can be quite di�erent from those of the average sectoral

error term (Udo). Therefore, even if this average sectoral error term (Udo) is orthogonal to the true measure of bilat-

eral trade costs (Tdo) in equation (20), there is no necessary reason why this composite error term (wXdo) should be

orthogonal to the aggregate measure of trade costs (ln τdo) in equation (26).

We are thus in a position to establish our main theoretical result:

Proposition 1 In a nested CES demand system, both sectoral and aggregate bilateral trade �ows can be expressed as

gravity equations that are log linear in origin characteristics, destination characteristics, a measure of bilateral trade

costs, and a stochastic error.
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Proof. The proposition follows immediately from equations (12) and (26).

Therefore, although Jensen’s inequality implies that the log of a sum is not equal to the sum of the logs, there exists

an exact Jensen’s inequality correction term for the nested CES demand system, such that bilateral trade �ows at each

level of aggregation can be expressed as a log-linear function of origin characteristics, destination characteristics,

bilateral trade frictions, and a stochastic error.

2.5 Components of Aggregate Gravity

Returning to our log-linear expression for aggregate bilateral trade between origin o and destination d in equation

(20), we can use the additive separability of this relationship in the bilateral components of aggregate trade (Γdo, Λdo,

Tdo, Jdo, Udo) to provide further evidence on the mechanisms through which bilateral trade costs a�ect aggregate

bilateral trade �ows. In particular, as well as estimating an aggregate gravity equation (26) for aggregate bilateral

trade (Xdo), we can estimate aggregate gravity equations for each of its components (Γdo, Λdo, Tdo, Udo):

Γdo = ηΓ
o + µΓ

d − V Γτdo + wΓ
do, (30)

Λdo = ηΛ
o + µΛ

d − V Λτdo + wΛ
do,

−Tdo = ηTo + µTd − V T τdo + wTdo,

Jdo = ηJo + µJd − V Jτdo + wJdo,

Udo = ηUo + µUd − V Uτdo + wUdo.

where we can compute Γdo, Λdo, −Tdo, Jdo, and Udo from estimates of the sectoral gravity equations (12) using the

observed data on bilateral trade.

Estimating equations (26) and (30) using ordinary least squares (OLS), the estimated coe�cient on bilateral trade

costs for aggregate trade (V X ) is the sum of those for each bilateral component (V Γ
, V Λ

, V T , V J , V U ). Therefore,

the relative magnitude of these estimated coe�cients reveals the extent to which the e�ect of bilateral trade costs on

aggregate bilateral trade (V X ) captures the direct e�ect of these trade costs on sectoral bilateral trade (V T ) versus

indirect e�ects through changes in the composition of sectors with di�erent origin �xed e�ects (V Γ
), destination �xed

e�ects (V Λ
), import shares (V J ), and error terms (V U ).

3 Data and Empirical Results

In our empirical analysis, we use the BACI CEPII world trade database, which reports the bilateral value of trade by

Harmonized System (HS) 6-digit product, origin and destination. To abstract from considerations that are speci�c to

the agricultural sector, we focus on mining and manufacturing products (HS 2-digit sectors 16-96), excluding arms

and ammunition (HS 2-digit sector 93). We model bilateral trade costs as a constant elasticity function of bilateral

distance between the most-populated cities of each origin and destination. We allow this elasticity of bilateral trade

costs with respect to bilateral distance to di�er across sectors. We report results using bilateral trade data for 2012,

but �nd similar results for other years.

We begin by estimating both an aggregate gravity equation and gravity equations for each sector. We do so for a

range of di�erent de�nitions of sectors, including HS 1-digit, HS 2-digit, HS 3-digit and HS 4-digit categories. As we
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include exporter and importer �xed e�ects in our gravity equations, we drop exporter-sector cells with less than 3

importers and importer-sector cells with less than 3 exporters, which results in slightly di�erent samples of exporters

and importers for each de�nition of sector.

As a �rst step, we sum bilateral trade �ows across sectors, and estimate the aggregate gravity equation (26) for each

of our samples. As reported at the bottom of Table 1 (row (vi)), we estimate a similar aggregate distance coe�cient

across these four samples. We �nd a elasticity of aggregate trade with respect to bilateral distance of around −1.65,

which is in line with existing studies, and is statistically signi�cant at conventional critical values.

As a second step, we estimate separate gravity equations for each sector for our alternative de�nitions of sectors.

We �nd substantial heterogeneity in the estimated distance coe�cients across sectors. These estimated distance coef-

�cients range from −1.9011 to −1.2794 using 1-digit sectors, −1.9428 to −0.8692 using 2-digit sectors, −1.9480 to

−0.7242 using 3-digit sectors, and −2.0576 to 1.5683 using 4-digit sectors. By itself, this heterogeneity in estimated

distance coe�cients across sectors suggests that the average distance coe�cient will vary across origin-destination

pairs with the set of sectors in which there is positive trade. We �nd that the extent of these di�erences in average

distance coe�cients generally increases as we move from less to more disaggregated de�nitions of sectors. For ex-

ample, using 4-digit sectors, the unweighted average distance coe�cient varies across origin-destination pairs from

−1.3995 at the 10th percentile to −1.0970 at the 90th percentile, and the trade-weighted average distance coe�cient

ranges from −1.5012 to −0.9885 between these same percentiles.

As a third and �nal step, we compute each of the components of aggregate bilateral trade (Γdo, Λdo, Tdo, Jdo,

Udo) in equation (20), and estimate separate gravity equations for each component, as in equation (30) above. In rows

(i)-(v) of Table 1, we report the estimated distance coe�cient for each component for alternative de�nitions of sectors

(across the columns). The sum of the coe�cients for each component across rows (i)-(v) equals the coe�cient for

aggregate bilateral trade in row (vi).

Perhaps unsurprisingly, we �nd that much of the e�ect of distance on aggregate trade (row (vi)) occurs through

the average e�ect of distance on sectoral trade (row (iii)). Nonetheless, we �nd a substantial negative and statistically

signi�cant coe�cient on our composition term (row (iv)), which ranges from−0.5188 using 1-digit sectors to−1.2846

using 4-digit sectors. We also �nd positive and statistically signi�cant correlations with distance for the origin-sector

�xed e�ects (row (i)), the destination-sector �xed e�ects (row (ii)), and the error term (row (v)). This pattern of results

is consistent with Alchian-Allen type e�ects, in which trade relationships over longer distances are a selected sample

of relationships with superior characteristics. The net e�ect of all of these forces is that the ratio of the aggregate to

the sectoral distance coe�cients ranges from 1.05 to 1.40, depending on the level of aggregation, which highlights the

importance of compositional di�erences for aggregate trade over long versus short distances.

4 Conclusions

Although the gravity equation is one of the most successful empirical relationships in economics, existing research

provides relatively little guidance as to the appropriate level of aggregation at which to estimate this relationship. In

this paper, we make two main contributions to this question.

First, we derive an exact Jensen’s inequality correction term for the nested CES demand structure, such that a

log-linear gravity equation holds exactly for each nest of utility. Second, we use this result to decompose the e�ect
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Table 1: Decomposition of the Distance E�ect in the Aggregate Gravity Equation

(1) (2) (3) (4)

HS1 HS2 HS3 HS4

(i) Origin �xed e�ect 0.1639*** 0.2732*** 0.2739*** 0.3146***

(0.0052) (0.0066) (0.0069) (0.0077)

(ii) Destination �xed e�ect 0.0472*** 0.0861*** 0.0841*** 0.0915***

(0.0025) (0.0034) (0.0033) (0.0040)

(iii) Distance -1.5704*** -1.5389*** -1.4352*** -1.1873***

(0.0044) (0.0066) (0.0067) (0.0098)

(iv) Composition term -0.5188*** -0.9138*** -0.9873*** -1.2846***

(0.0146) (0.0167) (0.0177) (0.0181)

(v) Error term 0.2275*** 0.4396*** 0.4128*** 0.4084***

(0.0151) (0.0132) (0.0130) (0.0135)

(vi) Aggregate -1.6505*** -1.6538*** -1.6517*** -1.6574***

(0.0195) (0.0196) (0.0196) (0.0196)

Observations 23,597 23,379 23,192 22,417

Note: Gravity equation estimates of aggregate bilateral trade from equation (26) (row (vi)) and the components of aggregate bilateral trade from

equation (30) (rows (i)-(v)) using the CEPII BACI trade database. Coe�cients in rows (i)-(v) sum to the coe�cient in row (vi). Columns correspond

to di�erent de�nitions of sectors. Heteroskedasticity robust standard errors in parentheses.

of distance on bilateral trade in the aggregate gravity equation into the contribution of a number of di�erent terms

from gravity equations estimated at a more disaggregated level: (i) origin �xed e�ects; (ii) destination �xed e�ects;

(iii) distance; (iv) our Jensen’s inequality or composition term; and (v) the error term.

Second, using the aggregate economy and sectors as our two nests of utility, we show that sectoral composition

makes a quantitatively relevant contribution to the overall e�ect of bilateral distance on international trade in the

aggregate gravity equation.
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