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Preliminaries:

Let Y = (Y1, Y2) be an n-dimensional Normal random variable with

μ = (μ1, μ2) , Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where the dimensions of Y1, μ1 and Σ11 are m, m, and m×m. The conditional distribution

of (Y1|Y2 = y2) is Normal with conditional mean vector

E [Y1|Y2 = y2] = μ1 + (y2 − μ2) Σ
−1
22 Σ21 (A1)

and conditional covariance matrix satisfying

Σ∗ = Σ11 − Σ12Σ
−1
22 Σ21. (A2)

Applying equation (A1), the conditional expectations are

E [η|sω, sη] = αssω + βssη (A3)

and

E [ω| sω, sη] = αrsω + βrsη, (A4)

where the weights in the sender’s ideal choice are

αs = σ2
εη

ρσ2

(σ2 + σ2
εω)(σ

2 + σ2
εη)− (ρσ2)2
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and

βs = σ2 σ2
εω − σ2ρ2 + σ2

(σ2 + σ2
εω)(σ

2 + σ2
εη)− (ρσ2)2

,

and the weights in the receiver’s ideal choice are

αr = σ2
σ2
εη + σ2 − σ2ρ2

(σ2 + σ2
εω)(σ

2 + σ2
εη)− (ρσ2)2

and

βr = σ2
εω

σ2ρ

(σ2 + σ2
εω)(σ

2 + σ2
εη)− (ρσ2)2

.

Proof of Lemma 1. The second moments of the random variable θ can be calculated as

C = αsσ2 + βsρσ2 = ρσ2

σ2
εω

σ2 +
σ2
εη

σ2 + 1− ρ2(
1 +

σ2
εω

σ2

)(
1 +

σ2
εη

σ2

)
− ρ2

,

which for σ2
εω = 0 amounts to

C = ρσ2.

Similarly,

V = (αs)2 V ar (sω) + (βs)2 V ar (sη) + 2αsβsCov (sω, sη)

= (αs)2
(
σ2 + σ2

εω

)
+ (βs) 2

(
σ2 + σ2

εη

)
+ 2αsβsρσ2 = σ2

σ2
εω

σ2 +
σ2
εη

σ2 ρ
2 + 1− ρ2(

1 +
σ2
εω

σ2

)(
1 +

σ2
εη

σ2

)
− ρ2

,

which for σ2
εω = 0 amounts to

V = σ2

σ2
εη

σ2 ρ
2 + 1− ρ2

σ2
εη

σ2 + 1− ρ2
.

For σ2
εη → 0, we get V = σ2. Applying l’Hospital, for σ2

εη → ∞ we get V = ρ2σ2.
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Lemma A1 Expected losses are minimized for the receiver and for the sender for an

action x∗ = E [y| sω, sη] for y = ω, η, respectively.

Proof of Lemma A1. Let us (·) = ur (·) ≡ u (·) = −	 (·) and y = ω, η. Consider the

problem

max
x

∞∫
−∞

u (x− y) f (y| sω, sη) dy,

where f (y| sω, sη) is the conditional density of y = ω, η given the signals. Since the utility

depends only on the distance between x and y we have u′ (x− y) > 0 for y > x, u′ (x− y) = 0

for x = y, and u′ (x− y) < 0 for y < x.

Consider the candidate solution x∗ = μy ≡ E [y| sω, sη] . The first-order condition can be

written as

∞∫
−∞

u′ (x∗ − y) f (y| sω, sη) dy =

∞∫
−∞

u′ (μy − y
)
f (y| sω, sη) dy = 0.

Consider two points y1 = μy −Δ and y2 = μy +Δ for arbitrary Δ > 0. By symmetry of

u around its bliss point and symmetry of the distribution around μy, we have

u′ (Δ) f
(
μy −Δ

∣∣ sω, sη) = −u′ (−Δ) f
(
μy +Δ

∣∣ sω, sη) .
Since this holds point-wise for each Δ, it also holds if we integrate over Δ. Thus, the first-

order condition is satisfied at x∗ = μy. By concavity of u in x, only one value of x satisfies

the first-order condition.

Proof of Proposition 1. Recall that u (·) = −	 (·) . An optimal information structure

solves:

max
V ∈[ρ2σ2,σ2]

∫
u

⎛
⎝z

(
σ2 − (ρσ2)

2

V

) 1
2

⎞
⎠φ (z) dz +

∫
u

⎛
⎝(

(ρσ2)
2

V
− 2

(
ρσ2

)
+ σ2

) 1
2

t

⎞
⎠φ (t) dt.
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The derivative wrt V is

1

2

(ρσ2)
2

V 2

∫
z

(
σ2 − (ρσ2)

2

V

)− 1
2

u′

⎛
⎝z

(
σ2 − (ρσ2)

2

V

) 1
2

⎞
⎠φ (z) dz

−1

2

(ρσ2)
2

V 2

∫ (
(ρσ2)

2

V
− 2

(
ρσ2

)
+ σ2

)− 1
2

tu′

⎛
⎝(

(ρσ2)
2

V
− 2

(
ρσ2

)
+ σ2

) 1
2

t

⎞
⎠φ (t) dt.

(A5)

First, suppose V = ρσ2. Then, the derivative wrt V satisfies∫
1

2
z
(
σ2 − ρσ2

)− 1
2 u′

(
z
(
σ2 − ρσ2

) 1
2

)
φ (z) dz

−
∫

1

2

(−ρσ2 + σ2
)− 1

2 tu′
((−ρσ2 + σ2

) 1
2 t
)
φ (t) dt

= 0.

Now suppose V �= ρσ2. Note that both integrands in (A5) have the common representation∫
1

a
ku′ (ak)φ (k) dk. (A6)

Differentiating wrt a, we observe that (A6) is monotone decreasing in a,

− 1

a3

∫
aku′ (ak)φ (k) dk +

1

a3

∫
a2k2u′′ (ak)φ (k) dk ≤ 0,

where the inequality follows from the curvature condition

q
u′′ (q)
u′ (q)

= q
	′′ (q)
	′ (q)

≥ 1. (A7)

V < ρσ2 implies
(ρσ2)

2

V
− 2ρσ2 + σ2 > σ2 − (ρσ2)

2

V
. The curvature condition (A7) implies

monotonicity and therefore

1

2

(ρσ2)
2

V 2

∫
z

(
σ2 − (ρσ2)

2

V

)− 1
2

u′

⎛
⎝z

(
σ2 − (ρσ2)

2

V

) 1
2

⎞
⎠φ (z) dz

≥ 1

2

(ρσ2)
2

V 2

∫ (
(ρσ2)

2

V
− 2

(
ρσ2

)
+ σ2

)− 1
2

tu′

⎛
⎝(

(ρσ2)
2

V
− 2

(
ρσ2

)
+ σ2

) 1
2

t

⎞
⎠φ (t) dt.
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Hence the derivative is non-negative for V < ρσ2. By symmetry, the derivative is non-

positive for V > ρσ2. These inequalities become strict for functions that satisfy the curvature

condition (A7) with strict inequality. It follows that the problem is maximized in V for

V = ρσ2.
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