Information and Communication in Organizations

Online Appendix

Inga Deimen and Dezsé Szalay™

Preliminaries:
Let Y = (Y7,Y3) be an n-dimensional Normal random variable with

Y1 Yo
= Y ) 2: J
pe= (s o) <221 222>

where the dimensions of Y7, y; and ¥1; are m, m, and m x m. The conditional distribution

of (Y1]Y2 = y9) is Normal with conditional mean vector
E[V1|Ya = yo] = p1y + (Y2 — p12) ¥25 Do (A1)
and conditional covariance matrix satisfying
Y =31 — LY Y. (A2)
Applying equation (A1), the conditional expectations are
E [n|sw, sy] = a’s, + B%sy, (A3)

and
E [w] 8w, 8y] = "5y + 8" sy, (A4)

where the weights in the sender’s ideal choice are
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(02 + 02)(0% + 02,) — (po?)?
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and the weights in the receiver’s ideal choice are
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Proof of Lemma 1. The second moments of the random variable # can be calculated as
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which for 62 = 0 amounts to

Similarly,

V = () Var (s,) + (6%)° Var (s,) + 2a°5*Cov (s, 5,)
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which for 62 = 0 amounts to
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For 02 — 0, we get V = 0. Applying 'Hospital, for 02 — oo we get V = p’0*. m



Lemma A1l FEaxpected losses are minimized for the receiver and for the sender for an
action z* = E[y| s, sy] for y = w,n, respectively.
Proof of Lemma Al. Let v*(-) =u () = u(-) = —¢(-) and y = w,n. Consider the
problem

o0

wax [ wle =) 1 (o] 005)
where f (y| sw,s,) is the conditional density of y = w, n given the signals. Since the utility
depends only on the distance between = and y we have v/ (x —y) > 0fory > z, v/ (x —y) =0
for x =y, and v/ (r — y) < 0 for y < x.

Consider the candidate solution z* = pu, = E[y| s,, s, . The first-order condition can be

written as
/ u (@ —y) f (Yl sw, 377) dy = / o’ (:Uy - y) I (Y] s, 377) dy = 0.

Consider two points y; = p,, — A and y, = p, + A for arbitrary A > 0. By symmetry of

u around its bliss point and symmetry of the distribution around u,,, we have

u (D) f (py = A sy sy) = =1 (=A) f (1, + A 50, 59) -

Since this holds point-wise for each A, it also holds if we integrate over A. Thus, the first-
order condition is satisfied at z* = . By concavity of u in z, only one value of x satisfies
the first-order condition. m

Proof of Proposition 1. Recall that u(-) = —¢(-). An optimal information structure

solves:
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The derivative wrt V is

1o [ (o 0o\ )
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First, suppose V = po?. Then, the derivative wrt V satisfies
Lo 2\~ 3 2 2\ 5
/52 (0% = po®) 2/ (z (0% — po )2) o (2)dz

— /% (—po® + 02)_% tu’ ((—pa2 + 02)% t> o (t)dt
= 0.

=

tu’ (@ —2(po®) + 02> t|o(t)dt.

Now suppose V' # po?. Note that both integrands in (A5) have the common representation

1
/—ku’ (ak) ¢ (k) dk. (A6)
a
Differentiating wrt a, we observe that (A6) is monotone decreasing in a,

1 1

—— [ aku’ (ak) ¢ (k) dk + —S/azkzu" (ak) ¢ (k)dk <0,
a a

where the inequality follows from the curvature condition

u” (q) B Vi (q)

q =q > 1. A7
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V < po? implies # —2po* + 0% > 02 — %. The curvature condition (A7) implies

monotonicity and therefore
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Hence the derivative is non-negative for V' < po?. By symmetry, the derivative is non-
positive for V' > po?. These inequalities become strict for functions that satisfy the curvature
condition (A7) with strict inequality. It follows that the problem is maximized in V for
V =po’ m



