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1 Preferences Data

The data on risk, time, and social preferences are part of the Global Preference Survey

(GPS), a recently released survey dataset on economic preferences from representative

population samples in 76 countries that is described in detail in Falk et al. (2018).¹ The

GPS data (i) are based on an ex-ante experimental validation procedure of the survey

items; (ii) make use of representative samples in 76 countries, for a total sample size

of 80,000 participants worldwide; (iii) are geographically representative in that they

cover countries on all continents and of all development levels; and (iv) were collected

though the professional infrastructure of the Gallup World Poll (see Falk et al., 2018,

for details).

Risk Taking. The set of survey items includes two measures of the underlying risk

preference – one qualitative subjective self-assessment and one quantitative measure.

The subjective self-assessment directly asks for an individual’s willingness to take risks:

“Generally speaking, are you a person who is willing to take risks, or are you not willing

to do so? (0–10)”

The quantitative measure is derived from a series of five interdependent hypothet-

ical binary lottery choices. In each of the five questions, participants had to decide

between a 50-50 lottery to win x or nothing (which was the same in each question)

and varying safe payments y . The questions were interdependent in the sense that

the choice of a lottery resulted in an increase of the safe amount y being offered in

the next question, and conversely. By adjusting the safe payment according to previous

choices, the questions “zoom in” around the respondent’s certainty equivalent. The self-

assessment and the outcome of the quantitative lottery procedure were then aggregated

into a single index which describes an individual’s degree of risk taking.

Patience. The measure of patience is also derived from the combination of responses

to two survey measures, one with a quantitative and one with a qualitative format.

The quantitative survey measure consists of a series of five hypothetical binary choices

¹See https://www.briq-institute.org/global-preferences/home
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between immediate and delayed financial rewards. Similar to the elicitation of risk

preferences, the questions were interdependent in the sense that the delayed payment

was increased or decreased depending on previous choices. The qualitative measure

of patience is given by the respondent’s self-assessment regarding their willingness to

wait on an 11-point Likert scale, asking “how willing are you to give up something that

is beneficial for you today in order to benefit more from that in the future?”.

Prosociality: Altruism, Positive Reciprocity, and Trust. The GPS includes six survey

items which map into three prosocial traits: altruism, positive reciprocity, and trust.

While these behavioral traits are conceptually distinct, they share in common that they

are commonly associated with “positive” social interactions.

Altruism was measured through a combination of one qualitative and one quantita-

tive item, both of which are related to donation. The qualitative question asked people

how willing they are to give to good causes without expecting anything in return on an

11-point scale. The quantitative scenario depicted a situation in which the respondent

unexpectedly received €1,000 and asked them to state how much of this amount they

would donate.

People’s propensity to act in a positively reciprocal way was also measured using

one qualitative item and one questionwith a quantitative component. First, respondents

were asked to provide a self-assessment about how willing they are to return a favor on

an 11-point Likert scale. Second, participants were presented a choice scenario in which

they were asked to imagine that they got lost in an unfamiliar area and that a stranger

– when asked for directions – offered to take them to their destination. Participants were

then asked which out of six presents they would give to the stranger as a “thank you.”

Finally, to measure trust, people were asked whether they assume that other people

only have the best intentions (Likert scale, 0-10).

Because these three variables are highly correlated and to reduce the number of

dependent variables (and associated multiple testing concerns), we collapse them into

a prosociality score that consists of the unweighted average of the three variables.

Negative Reciprocity. Negative reciprocity was elicited through three self-assessments.

First, people were asked how willing they are to take revenge if they are treated very

unjustly, even if doing so comes at a cost (0-10). The second and third item probed re-

spondents about their willingness to punish someone for unfair behavior, either towards

themselves or towards a third person.

As discussed in Falk et al. (2018), the preference measures are constructed by lin-

early combining responses to the survey items using weights that are derived from the

experimental validation procedure.
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We investigate the origins of this heterogeneity through a bilateral regression ap-

proach in which absolute differences in preferences serve as dependent variable. Thus,

we compute the absolute difference in a given trait. Furthermore, for each population

pair, we calculate an overall summary statistic of preference differences by summing

up these absolute differences across preference dimensions. This summary statistic can

be understood as a measure of overall preference dissimilarity.

2 Data on Ancestral Distance

2.1 Data on Genetic Distance

Whenever populations break apart, they stop interbreeding, thereby preventing a mix-

ture of the respective genetic pools. However, since every genetic pool is subject to ran-

dom drift or local selection pressures, geographical separation implies that over time

the genetic distance between sub-populations gradually becomes (on average) larger.

Thus, the genealogical relatedness between two populations reflects the length of time

elapsed since these populations shared common ancestors. Our country-level data on

the so-called FST genetic distance are taken directly from Spolaore andWacziarg (2009)

and Spolaore and Wacziarg (2017). These are two different and independent datasets

on genetic distance. The first is derived from data on classic genetic markers, while

the second is based on microsatellite variation. In both cases, Spolaore and Wacziarg

match the pairwise ethnic-group level distances to countries and then compute the ex-

pected genetic distance between two countries. These genetic distance measures have

the same conceptual basis, but are based on different biological information and sam-

ples.

Technically, genetic distance constitutes an index of expected heterozygosity, which

can be thought of as the probability that two randomly matched individuals will be

genetically different from each other in terms of a pre-defined spectrum of genes. In-

dices of heterozygosity are derived using data on allelic frequencies, where an allele is

a particular variant taken by a gene. Intuitively, the relative frequency of alleles at a

given locus can be compared across populations and the deviation in frequencies can

then be averaged over loci.

This is the approach pursued in the work of the population geneticists Cavalli-Sforza,

Menozzi and Piazza (1994). The main dataset assembled by these researchers consists

of data on 128 different alleles for 42 world populations. By aggregating differences

in these allelic frequencies, the authors compute the FST genetic distance, which pro-

vides a comprehensive measure of genetic relatedness between any pair of 42 world

populations. Since genetic distances are available only at the population rather than
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at the country level, Spolaore and Wacziarg (2009) matched the 42 populations in

Cavalli-Sforza, Menozzi and Piazza (1994) to countries.² Thus, the genetic distance

measures we use measure the expected genetic distance between two randomly drawn

individuals, one from each country, according to the contemporary composition of the

population.

Recently, Spolaore and Wacziarg (2017) introduced a new dataset of cross-country

FST genetic distances that is based on the work by Pemberton, DeGiorgio and Rosenberg

(2013). While the data from Cavalli-Sforza, Menozzi and Piazza (1994) are based on

classic genetic markers, this new dataset is based on microsatellite variation, covering

645 microsatellite loci and 267 populations, thus providing a more comprehensive and

detailed coverage of world populations. Spolaore and Wacziarg (2017) again matched

these population-level FST distances to countries using ethnic composition data from

Fearon (2003). In sum, this more recent genetic distance measure has the same con-

ceptual basis, but is based on different biological information and samples.

2.2 Data on Linguistic Distance

Population break-ups produce not only diverging gene pools, but also differential lan-

guages. The construction of linguistic distance follows the methodology proposed by

Fearon (2003). The Ethnologue project classifies all languages of the world into lan-

guage families, sub-families, sub-sub-families etc., which gives rise to a language tree.

In such a tree, the degree of relatedness between different languages can be quantified

as the number of common nodes two languages share. For each country pair, we cal-

culate the weighted linguistic distance according to the population shares speaking a

particular language in the respective countries today.

To compute the linguistic distance between any two languages, we apply the fol-

lowing procedure. If two languages belong to different language families, the number

of common nodes is 0. In contrast, if two languages are identical, the number of com-

mon nodes is 15. Following Fearon (2003), who argues that the marginal increase in

the degree of linguistic relatedness is decreasing in the number of common nodes, we

²To this end, the authors used ethnic composition data from Fearon (2003): the data by Cavalli-
Sforza, Menozzi and Piazza (1994) contain information on the groups that were sampled to obtain
genetic distance estimates, and these groups can be matched one-to-one to the ethnic groups that pop-
ulate countries. Thus, the data from one group in Cavalli-Sforza, Menozzi and Piazza (1994) can be
assigned to sub-populations in potentially multiple countries, so that, in principle, even the relatively
small number of 42 populations is sufficient to compute genetic distances between more than 100 coun-
tries.
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transformed these data according to

Linguistic distance (tree)= 1−

√

√# Common nodes
15

to produce distance estimates between languages in the interval [0, 1]. We restricted

the Ethnologue data to languages which either make up at least 5% of the population

in a given country, or are an interview language in the GPS.

To convert these language distances into distances at the country level, we compute

the expected linguistic distance between two randomly selected individuals, one from

each country. Formally, suppose there are N languages. Let s1,i be the share of the pop-

ulation in country 1 which speaks language i and denote by di, j the linguistic distance

between languages i and j. Then, the (weighted) linguistic distance between countries

1 and 2 is given by

Linguistic distance1,2 =
N
∑

i=1

N
∑

j=1

(s1,i × s2, j × di, j)

As a second and complementary measure of linguistic distance, we use a lexico-

statistical measure of linguistic distance developed as part of the Automatic Similarity

Judgment Program (ASJP) at the Max Planck Institute for Evolutionary Anthropology

(Wichmann, Holman and Brown, 2016). This measure has been developed partly to

allow for analyses of when languages diverged from each other (Holman et al., 2011).

The measure is based on a list of 40 words with universal meaning across languages

(e.g., “I”, “hand”, and “night”). The measure of linguistic distance is constructed by

counting the number of phonetic edits needed to rewrite each word from one language

spelling to another. The ASJP database contains the full matrix of linguistic distances

between more than 4,500 languages. We again convert these language-level distances

into country-level distances by calculating the weighted linguistic distance according to

the population shares speaking a particular language in the respective countries today.

2.3 Construction of Composite Measure of Ancestral Distance.

In sum, we have access to four proxies for ancestral distance (or temporal distance).

Given that these measures follow different methods of construction and are likely to be

plagued by measurement error, we construct a composite index of ancestral distance as

unweighted average of the standardized values (z-scores) of the four distance variables.

We standardize the ancestral distance measure into a z-score to ease interpretation

of regression coefficients. To get a sense for the underlying variation, note that a one
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standard deviation increase in ancestral distance corresponds to moving from a country

pair such as Finland and Portugal to a country pair such as Bolivia and Philippines or

Poland and Tanzania.
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3 Formal Framework

3.1 Model

We here formally illustrate how both of the channels discussed in the main text (his-

torical experiences and genetic pools) yield the prediction that longer separation im-

plies larger absolute differences in preferences. The framework builds on Spolaore and

Wacziarg (2009).

We conceptualize both experiences and genetic changes through population-specific

stochastic shocks. We then show that these shocks “add up” over time and hence gener-

ate a relationship between length of separation and preference differences. Importantly,

neither the framework nor our empirical exercise distinguishes (or is even intended to

distinguish) between genetic and experience-basedmechanisms. Given recent evidence

on gene-environment interactions (see Manuck and McCaffery, 2014, for an overview),

the long-run focus of our analysis renders such a distinction fundamentally misguided.

A seemingly important assumption is how the population-specific shocks are dis-

tributed across populations and time. Evidently, making intuitively appealing assump-

tions such as “populations that have been separated for a shorter time and hence likely

live close geographically are subject to more similar shocks”, would trivially yield the

prediction that temporal distance predicts preference differences. However, we derive

our prediction in its arguably starkest form by showing that preference differences

should depend on temporal difference even if the shocks are independently distributed

across time and space.

Formally, suppose that there is a set of N contemporary populations. In period t =
0, 1, . . . , T , each population i has a scalar-representable preference endowment x t

i . In

period t = 0, all contemporary populations were part of one “parental” population and

we normalize the preference endowment to x0 = 0. Over time, populations successively

broke apart from each other. For each time t = 0,1, . . . letPt be a partition of {1, . . . , N},
that is, Pt is a collection of disjoint nonempty sets whose union is {1, . . . , N}. The
elements of Pt represent the different populations at time t. For each t ≥ 0 and i ∈
{1, . . . , N} let Pt(i) be the unique A∈ Pt that contains i.

In each period, a given population’s preference endowment is subject to a random

shock, which could result from experiences or changes in the genetic pool, or both. That

is, as long as two populations are not separated, they get hit by the same shock, but once

they split up, they are subject to separate, and potentially different, shocks. For each

t ≥ 1 and each A ∈ Pt let ε
t
A be such a random shock. Even though this is technically
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redundant, we will assume that the shocks have mean zero to ease interpretation. Let

x t
i =

t
∑

τ=1

ετPτ(i).

That is, a population’s preference endowment in period t is given by the sum of the

accumulated shocks. The object of interest in the empirical analysis is the expression

E
h
�

�

�x T
i − x T

j

�

�

�

i

for i, j ∈ {1, . . . , N}. We will show that under arguably very mild assumptions this ab-

solute difference in preferences between populations i and j is increasing in the num-

ber of periods in which the populations were separated. Fix T ≥ 1. For populations

i, j ∈ {1, . . . , N} let si j = |{t ∈ {1, . . . , T} : Pt(i) 6= Pt( j)}|. Thus, si j is the number of

periods up to time T where i and j were separated.

To derive our main prediction, we will assume that the preference shocks are in-

dependently and identically distributed across time and populations. As noted above,

this assumption only serves to derive the prediction in its starkest (and arguably non-

trivial) form. As we discuss below, other assumptions would often trivially generate the

prediction that longer separation induces larger preference differences.

Proposition 1. Suppose the shocks εt
A, A ∈ Pt , t = 1, . . . , T , are i.i.d. nondegenerate

integrable random variables. Let i, j, k, l ∈ {1, . . . , N}. Then

si j > skl ⇔ E
h
�

�

�x T
i − x T

j

�

�

�

i

> E
��

�x T
k − x T

l

�

�

�

.

The proof is below.³ To see the basic intuition, suppose that populations i and j

are still one population in T , i.e., they got hit by the same sequence of shocks, so that

their absolute difference in preferences is zero. Suppose further that populations i and

k were separated for one period, implying that their absolute difference in preferences

is given by |x T
i − x T

k | = |εi − εk|. In expectation, this expression is strictly greater than

zero. The proposition shows that this intuition holds for arbitrary population breakups

and time spans. Hence, we state the following testable hypothesis:

Hypothesis. The absolute difference in preferences between two populations increases in

their length of separation.

³We are deeply indebted to Lorens Imhof for proposing the proof to us.
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Note that the assumptions in Proposition 1 are sufficient, but not necessary, to gen-

erate the prediction that longer separation implies larger expected absolute differences.

Remark 1. It is conceivable that the preference shocks are drawn from different distribu-

tions along the migratory path, say because the further populations migrate the larger the

average preference shock. However, if preferences evolved monotonically along the migra-

tory path, then temporal distance trivially ought to be predictive of preference differences,

which is why we refrain from making such strong assumptions. In addition, there is no

biological principle according to which the evolution of a scalar-representable trait must

follow a monotonic path. While there are reasons to believe that traits like risk aversion,

time preference, or altruism are subject to local selection pressures, these selection pressures

might operate in different directions along the migratory path as groups of humans and

their descendants pass through many different environments.

Remark 2. The assumption that preference shocks are independent of each other across

space is likely to be unrealistic. However, again, making natural assumptions on the depen-

dence of the shocks across populations would trivially imply the prediction that populations

with low temporal distance have more similar preference profiles.

3.2 Proofs

We are deeply indebted to Lorens Imhof for proposing these proofs to us.

Proof of Proposition 1. We have

x T
i − x T

j =
T
∑

t=1

εt
Pt (i)
−

T
∑

t=1

εt
Pt ( j)
=

∑

t=1,...,T,
Pt (i)6=Pt ( j)

�

εt
Pt (i)
− εt

Pt ( j)

�

,

which is a sum of si j differences of shocks. Let u1, . . . , uT , v1, . . . , vT be i.i.d. random

variables having the same distribution as the εt
A. Then x T

i − x T
j has the same distribution

as
∑si j

n=1(un − vn). A similar argument shows that x T
k − x T

l has the same distribution as
∑skl

n=1(un − vn). In particular,

E
h
�

�

�x T
i − x T

j

�

�

�

i

= E
�

�

�

�

si j
∑

n=1

(un − vn)
�

�

�

�

and

E
��

�x T
k − x T

l

�

�

�

= E
�

�

�

�

skl
∑

n=1

(un − vn)
�

�

�

�

.
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The claimed equivalence will follow if we can show that

E
�

�

�

�

m
∑

n=1

(un − vn)
�

�

�

�

< E
�

�

�

�

m+1
∑

n=1

(un − vn)
�

�

�

�

, m= 0, . . . , T − 1. (1)

We will apply Lemma 1 below. Fix m ∈ {0, . . . , T − 1} and let y =
∑m

n=1(un − vn) and
z = um+1− vm+1. Then y and z are independent integrable random variables. Moreover,

E[z] = E[um+1]− E[vm+1] = 0 and since the shocks are nondegenerate,

P(z 6= 0)≥ P(um+1 > E[um+1], vm+1 < E[vm+1])

= P(um+1 > E[um+1])P(vm+1 < E[vm+1])> 0.

Finally, for every c > 0, there exists ξ ∈ R such that P(|
∑m

n=1 un − ξ|<
c
2)> 0. Hence,

P(|y|< c)≥ P
�

�

�

�

m
∑

n=1

un − ξ
�

�

�<
c
2

,
�

�

�

m
∑

n=1

vn − ξ
�

�

�<
c
2

�

= P
�

�

�

�

m
∑

n=1

un − ξ
�

�

�<
c
2

�2
> 0,

which shows that the support of the distribution of y contains the point 0. Inequality

(1) now follows from Lemma 1. �

Lemma 1. Let y and z be independent integrable random variables. Suppose that 0 is in

the support of the distribution of y , E[z] = 0 and P(z 6= 0)> 0. Then E[|y+z|]> E[|y|].

Proof. Since y and z are independent, E[z|y] = E[z] = 0, and so

E[|y + z||y]≥ |E[y + z|y]|= |E[y|y]|= |y|. (3)

Using the inequality |y + z| ≥ |z| − |y| and again the independence of y and z, we

obtain

E[|y + z||y]≥ E[|z||y]− E[|y||y] = E[|z|]− |y|.

Hence, on the event {2|y|< E[|z|]},

E[|y + z||y]> |y|.

The assumption that P(z 6= 0) > 0 implies that E[|z|] > 0, and since 0 is contained in

the support of the distribution of y , P(2|y| < E[|z|]) > 0. That is, inequality (2) holds

almost everywhere and the inequality is strict on a set of positive probability. Taking

expectations we get E[|y + z|]> E[|y|]. �
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