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1 Model

This section describes the behavioral SIR model presented in our paper. There is a mass of N
individuals (i.e. the US population, 328 million). Each individual belongs to one of five states
at time t, denoted S (susceptible), E (exposed), I (infected), R (recovered), and D (deceased)
respectively. The unit of time, indexed by t, is a day.

The transition equations for each compartment can be written as:

dSt = −βtφtSt ItN (1)

dEt = βtφtSt
It
Nt

− σEt (2)

dIt = σEt − γIt − δtIt (3)

dRt = γIt (4)

dDt = δtIt (5)

where βt is an endogenous transmission factor, φt is an exogenous seasonal transmission factor,
σ−1 is the mean delay (in days) between exposure and onset of infectiousness; γ−1 is the mean
delay (in days) between onset and cessation of infectiousness, and δt is the (time-varying, daily)
fatality rate for infected individuals.

The equation linking the transmission factor β to economic activity st is:

βt = exp(β0 + β1st) (6)

where the parameter β0 represents transmissibility unrelated to economic activity st and the
parameter β1 represents transmissibility related to st.

The equation linking the economic activity st to yesterday’s deaths DRt−1 is:

st = κ0 + κ1DRt−1 (7)

where the parameter κ0 represents baseline economic activity to yesterday’s deaths and the
parameter κ1 represents the relationship between yesterday’s deaths DRt−1 and economic
activity st.
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The description of the model in this section assumes that the parameters β0, β1, κ0, and κ1 are
fixed. This is an expositional choice that is meant to clarify that these are model parameters. Our
estimation strategy allows these parameters to flexibly vary over time. Details on our calibration
of the exogenous factors φt and δt and estimation of the model are given in section 3 of this
appendix.

Given initial conditions and parameters, this model can be solved numerically in discrete time
by repeatedly applying the transition equations. We solve a discrete-time analogue of this model
with 14 steps per day.

2 Data

We estimate our model with daily time series on COVID-19 deaths and labor hours, which
correspond to the time series Dt and st in our model.

The data on observed daily deaths in the United States is derived from the Center for Systems
Science and Engineering (CSSE) at Johns Hopkins University, available on a public GitHub
repository.

The data on economic activity corresponds to (seasonally adjusted) aggregate weekly hours
of production and nonsupervisory employees, which is produced by the US Bureau of Labor
Statistics and available at monthly frequency on FRED. We interpolate this data to daily frequency
using the daily private employment series made available by Chetty et al. (2020), also available
in a public GitHub repository.

We explored several options for interpolation of the weekly hours series to daily frequency. An
alternative interpolation using an index of time spent outside home (available through Google’s
Community Reports) yielded nearly identical results. Univariate methods of interpolating the
hours series - for instance, cubic spline interpolation - also yield nearly identical results.

3 Estimation

The purpose of this section is to describe the estimation strategy used to produce time-varying
estimates of the key parameters β0, β1, κ0, and κ1.

Calibration

We calibrate four objects that appear in our model: the seasonal transmission factor φt, the
time-varying infection fatality rate δt, the infection onset latency parameter σ, and the recovery
latency parameter γ.

The seasonal transmission factor φt is calibrated using information from Tzampougli and
Loukidis (2020). These authors estimate that transmissibility of COVID-19 is subject to a 20%
to 30% seasonal swing in transmission (peaking in the winter). We take the midpoint of this
estimate and assume that seasonality is symmetric with a periodicity of exactly one year. The
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seasonal transmission factor can therefore be expressed as:

φt = 0.875 + 0.125cos(2π((t− t0)/365))

where t0 is a time index corresponding to January 1.

We calibrate the time-varying infection fatality rate using information from two sources. First,
we calibrate an initial IFR for the population at 0.8%. Then δ0 = γ × IFR

1−IFR . Following discussion
reported in Ledford (2020), we assume that this ’baseline’ IFR has fallen by 20% over the course
of the pandemic.

The parameters γ and σ are calibrated using evidence from Kissler et al. (2020) as in Atkeson,
Droste, Mina, and Stock (2020). γ is set to 1/5 and σ is set to 1/4.87, so that we assume the amount
of time between exposure and infection and between infection and recovery both average about
5 days.

Rolling Estimation

We estimate these parameters in a flexible fashion by using system estimation with nonlinear
least squares using a rolling 8-week estimation window.

The full sample period consists of data from March 15 to December 17, 2020. Our rolling
estimation procedure considers eight week windows starting at the beginning of the sample,
iterating the start and end dates forward by two weeks for each successive run. This procedure
continues until we reach the end of the estimation sample.

For a given window, our estimates correspond to system estimation of equations (1)-(7) using
nonlinear least squares, where daily deaths and economic activity are observed. There are six
parameters: initial conditions for infected and exposed I0 and E0, plus the key parameters of
interest β0, β1, κ0, and κ1. The initial stock of deceased individuals are set at historical values
(since deaths are observed in our data), and the initial stock of recovered individuals is set to 01.
The remaining initial condition corresponding to the initial stock of susceptibles (S0) is pinned
down by a population adding-up constraint.

We report heteroskedasticity and autocorrelation-robust confidence intervals for these parameters
by computing pointwise VAR-HAC standard errors for each window in the rolling estimation.
HAC variances computed for each rolling window are very noisy because of the short window
and the need for computing a 6-dimensional variance matrix. We therefore used the following
approach for computing HAC standard errors: Start by fixing a starting date for the N-week
window. At the estimated parameter values for that window, compute derivatives of the
predicted values with respect to the parameters, along with residuals at the estimated values.
Use these to construct the relevant matrices of derivatives, and derivatives-times-errors, for each
day within the window. Save the values of that series at the center day, and then move the
window forward by one day. Daily parameter estimates were computed by linear interpolation

1This is interpreted as low-frequency movement in the parameter β0 in our estimates, which we view as inconse-
quential given the relatively small number of recovered individuals accumulating in each 8-week window.
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of the weekly parameter estimates. A first-order vector autoregression is fit to the derivatives-
times-errors data, and the VAR-HAC estimator is then computed. The resulting standard error is
scaled for the window size then applied to each estimate. The results for a VAR of order 2 are
slightly larger than the VAR(1) estimates reported here.

4 Sensitivity Analyses

We explored the sensitivity of our analysis to changes in the rolling estimation procedure;
specifically, the window size. Our baseline results are estimated with 8-week rolling estimation
windows. Figure 1 Panel A depicts observed weekly deaths in the United States and our model
predictions under a baseline 8-week regression window. The black line corresponds to observed
weekly deaths and the remaining lines indicate predictions from successive rolling regressions.
Figure 1 Panel B utilizes a longer 12-week estimation window. As expected, model fit deteriorates
significantly for larger window sizes. Intuitively, time variation in our parameters is necessary
to fit the multiple peaks observed in COVID death data in the US, as described in the main text.
We therefore focused on relatively short estimation windows.

Figures 2 and 3 plot our time-varying estimates of κ1 and β1, respectively, under 8-week and
6-week estimation windows. A 6-week estimation window produces estimates that are qual-
itatively very similar in both cases, though the confidence bands are somewhat wider. For
completeness, we also report our time-varying estimates of κ0 and β0 in Figures 4 and 5, respec-
tively, under the same 8-week and 6-week rolling estimation windows. There, too, the estimates
are relatively robust to changes in window size.
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Figure 1: Predicted vs. Observed Weekly Deaths, Rolling Estimation

Panel A. 8-week Estimation Windows (Baseline)

Panel B. 12-week Estimation Windows

Notes: These figures plot observed weekly deaths (black line) vs. our rolling regression estimates described
in section 3 of this appendix. Panel A plots our baseline predictions with 8-week (56-day) estimation
windows. Panel B plots alternative predictions with 12-week (84-day) estimation windows.
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Figure 2: Time-Varying Estimates of κ1, Varying Rolling Estimation Window Size

Panel A. 8-week Estimation Windows (Baseline)

Panel B. 6-week Estimation Windows

Notes: These figures our time-varying estimates of κ1 under the baseline 8-week estimation window
(Panel A) and an alternative 6-week window (panel B).
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Figure 3: Time-Varying Estimates of β1, Varying Rolling Estimation Window Size

Panel A. 8-week Estimation Windows (Baseline)

Panel B. 6-week Estimation Windows

Notes: These figures our time-varying estimates of β1 under the baseline 8-week estimation window
(Panel A) and an alternative 6-week window (panel B).
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Figure 4: Time-Varying Estimates of κ0, Varying Rolling Estimation Window Size

Panel A. 8-week Estimation Windows (Baseline)

Panel B. 6-week Estimation Windows

Notes: These figures our time-varying estimates of κ0 under the baseline 8-week estimation window
(Panel A) and an alternative 6-week window (panel B).
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Figure 5: Time-Varying Estimates of β0, Varying Rolling Estimation Window Size

Panel A. 8-week Estimation Windows (Baseline)

Panel B. 6-week Estimation Windows

Notes: These figures our time-varying estimates of β0 under the baseline 8-week estimation window
(Panel A) and an alternative 6-week window (panel B).
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