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A Data & Descriptives

Table A1 displays the number of observations by state as well as the area and population

shares of the ZRG.

Table A1: Characteristics of the Zonenrandgebiet

No. districts No. municipalities Area ZRG Pop. ZRG

Non-ZRG ZRG Non-ZRG ZRG in % in %

West Germany 382 90 6,839 1,573 18.6 12.3

Schleswig-Holstein 6 14 414 710 53.3 81.3

Lower Saxony 54 22 711 282 28.6 33.4

North-Rhine Westfalia 80 0 386 0 0 0

Hesse 33 12 323 96 27.8 19.1

Bavaria 112 42 1,533 485 25.8 21.9

Other West-German states 97 0 3,472 0 0 0

Notes: The states (Länder) Schleswig-Holstein, Lower Saxony, Hesse, and Bavaria belonged to the ZRG. We add
North Rhine-Westphalia as it borders with the ZRG, but drop the city states of Hamburg and Bremen. The
districts correspond to the 1971 classification while we use data from 1986 for the number of municipalities, and
the year 1961 for population shares.

All districts that accommodated at least 50 percent of their area or population within

40 kilometers to the inner-German or Czechoslovakian border on January 1, 1971 became

part of the Zonenrandgebiet.19 A list of all 1971 districts that belonged to the ZRG is

19See Deutscher Bundestag (1970), Drucksache VI/796 and Ziegler (1992, p.9). According to a state-
ment by state secretary Sauerborn, the 40-kilometer rule also included less needy regions, but was
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contained in the federal law ‘Zonenrandförderungsgesetz’, 1971. Data on population by

municipality is available from the Federal Statistical Office for the years 1975-2010. For

the years 1950-1970 we have acquired the data from the Statistical Offices of the five

Länder we consider. Likewise, information on income, business taxes, and employment

was provided by the statistical offices of the individual states. Data on municipal area

shares covered by private, public, commercial, industrial, and residential capital was

provided by the Federal Institute for Research on Building, Urban Affairs and Spatial

Development. The data on land prices are provided by the states’ expert committees

and by F&B real estate consulting.

Georeferencing. To georeference municipality data, we use digital maps (shape

files) from the Bundesamt für Kartographie und Geodäsie. As they are only available

since 1997, we assign each municipality to a district in 1971 and drop all observations

where the municipality cannot be linked to a district with at least 90 percent of its

area (20 municipalities or about 0.4 percent of the sample).20 Moreover, we drop 31

municipalities due to partial treatment (i.e. the ZRG border crosses the municipality

based on the 1997 or 2010 classification). This occurs due municipality mergers between

municipalities being located on opposite sides of the ZRG border. In these cases the

municipalities that were located outside the ZRG and merged with municipalities in the

treatment area could not become eligible for transfers but the treatment border passes

through the municipalities. Hence, the jurisdictional boundaries as of January 1, 1971

remained relevant for treatment throughout the duration of the program. The boundary

sample of municipalities contains all jurisdictions with a distance to the ZRG border

of less than 100 kilometers. This includes all municipalities in the treated region and

about 68 percent of the municipalities in the five states west of the ZRG border. For the

boundary sample at the district level, we limit the observations to jurisdictions that are

sufficiently close to the threshold determining transfer eligibility i.e. Md ≤ 150. This

includes again all treated observations and about 50 percent of the districts outside the

treated area and in the five states. Note that all our analyses are based on the 1971

appealing for practical reasons in the first place (see Protocol of the 39th session of the cabinet commit-
tee of economics). It was recognized in the parliamentary debate on June 17, 1971 that the treatment
border must remain fixed over time in order to rule out strategic modifications of local district borders
(see Protocol of the 128th session of the Bundestag).

20This may happen due to changes in administrative boundaries that were frequent especially in the
1970s. Note that all our results are robust to the exclusion of all municipalities that could not perfectly
be assigned to a 1971 district.
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district classification such that the number of districts remains constant over time.

Depending on the municipality classification of each data source we assign it either

to the 1997 or 2010 shape file of municipal boundaries. Thereby, we link 1971 districts

(and thus treatment status), coordinates, and distances from the ZRG boundary to the

outcome variables. Geospatial data processes have been performed and documented in

ArcGIS using shape files about administrative boundaries in 1971, 1997, and 2010. Table

A2 provides information about the data sources of all variables we use and the respective

level of spatial aggregation.

Administrative & satellite data. Table A3 displays summary statistics for all

variables in the boundary sample used in our analysis. income and business taxbase are

measured in 1,000 euros and in current terms. Note that the business tax base is defined

homogeneously across all municipalities in Germany. The average income per square

kilometer was about 1.5 million euros during the transfer program and it increased to

about 2.8 million euros in 2010. Note that averages across municipalities deviate from

the country average because cities receive the same weight as small municipalities. Mu-

nicipalities are the smallest administrative units comprising on average about 33 square

kilometers with a high standard deviation and a minimum of 0.45 square kilometers

while the largest municipality stretches over 359 square kilometers. The average number

of inhabitants increased from about 5,900 in 1986 to 6,500 in 2010. Accordingly, the

municipal average of population density reaches about 160 (178 in 2010) individuals per

square kilometer which is well below the German average of about 220. Likewise, per

capita income and employment density average at relatively low levels of about 25,000

euros and 40 employees per square kilometer. Note also that 19 (7) municipalities exist

in 1986 (2010) that have no employment and taxable business income such that they

will be dropped when specifying these outcomes in logarithmic terms.

If not stated differently, all variables refer to municipalities. public capital and private

capital measure the area share of a municipality covered by public infrastructure (area

used for streets, railway, airports, seaports, public squares, public buildings etc.) and

private structures (industry, business, and housing), respectively. Note that private

capital is the sum of residential capital and industrial capital. human capital refers to

the share of residents with tertiary education. Land prices correspond to current prices

per m2 and stem from evaluations of expert committees.
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Private capital and radiance are also summarized for grid cells of 100m × 100m

and 30 × 30 arc-seconds (about 900m × 600m in the center of Germany), respectively.

Radiance of grids is computed according to digital integer numbers reported by satellite

data of the Defence Meteorological Satellites Program – Operational Linescan System

(DMSP-OLS).21 These data measure night-time lights in the year 1992 and are widely

used in research (see, e.g., Elvidge et al., 1997; Henderson, Storeygard, and Weil, 2012).

The information on PrivateCapital is provided by the European Environmental Agen-

cies CORINE project for the year 1990. The data contains a variable that indicates 44

different land cover classes. We set PrivateCapital = 1 if a place is covered by ‘Continu-

ous urban fabric’, ‘Discontinuous urban fabric’, ‘Industrial or commercial units’, or ‘Con-

struction sites’ and zero otherwise. Note that the area-weighted sum of PrivateCapital

is highly correlated with our municipality-level variable for private capital which is de-

scribed in section 3 (correlation coefficient of 0.84). Moreover, the averages for the area

share of private capital measured at the grid-cell and municipality levels are relatively

close to each other even though the data sources differ. The deviation is possibly again

due to the identical weight attached to municipalities of different size when summarizing

the municipality level data.

21The satellite data report digital integer numbers ranging from 0 to 63. These may be converted
to radiance as a measure of night luminosity by using the formula radiance = digitalnumber1.5 for a
spatial unit which is denoted in terms of Watts/cm2/sr/nm (in words: Watts per squared centimeter
per steradian per nanometer of wave length).
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Table A2: Data sources

Variable Spatial aggregation Source

area municipality/district Shapefiles from Federal Institute for Research on Building, Urban Affairs
and Spatial Development; Municipality data from Federal Statistical Office

income municipality Statistical Offices of the Länder

population municipality Federal Statistical Office; Statistical Offices of the Länder for pre 1970 data

employment municipality Statistical Offices of the five Länder

human capital municipality Federal Employment Agency

public capital municipality/grid cell Federal Office for Building and Regional Planning;
European Environmental Agency

local public budget: municipality Statistical Offices of the Länder
-public investments
-federal invest subsidies
-local tax revenues

private capital municipality/grid cell Federal Office for Building and Regional Planning;
European Environmental Agency

business taxbase municipality Statistical Offices of the Länder

land price municipality States’ expert committees; F&B real estate consulting

radiance grid cell NOAA Defence Meteorological Satellites Program

roads municipality/grid cell Openstreetmap.org
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Table A3: Descriptive statistics of outcome variables

Contemporaneous Persistent

Mean Std.dev. Obs. Year Mean Std.dev. Obs. Year

area in km2 33.042 33.378 3,870 1986 33.167 33.572 3,881 2010

income/km2 1,250.7 2,228.8 3,870 1986 2,848.0 4,701.9 3,881 2010

radiance (grid cell) 47.546 71.478 110,300 1992 112.420 107.019 110,300 2010

population 5,931.77 20,318.12 3,870 1986 6,530.91 21,848.77 3,881 2010

population/km2 160.083 238.896 3,870 1986 178.333 258.123 3,881 2010

employment/km2 39.268 99.807 3,826 1986 48.891 119.248 3,665 2010

income/capita 19.450 4.675 3,870 1986 31.461 7.247 3,881 2010

human capital 0.028 0.024 1,782 1985 0.061 0.048 2,576 2010

public capital 0.044 0.020 3,855 1984 0.051 0.023 3,865 2010

private capital 0.048 0.048 3,845 1984 0.067 0.057 3,851 2010

private capital (grid cell) 0.061 0.240 7,786,402 1990 0.074 0.262 7,786,402 2012

industrial capital 0.007 0.012 1,260 1988 0.008 0.010 1,234 2010

business taxbase/km2 7.985 24.456 3,533 1986 18.568 77.828 3,792 2010

business taxbase/employee 0.201 0.403 3,667 1986 0.425 0.626 3,642 2010

land price 26.197 21.016 982 1988 74.188 70.601 3,635 2010

tax revenues/capita 305.459 135.204 2,650 1985 682.282 2492.996 3,169 2010

federal invest. subsidies/capita 67.998 102.889 2,650 1985 97.609 289.147 3,169 2010

public investment/capita 332.549 244.764 2,614 1985 571.427 567.357 3,171 2010

Notes: We consider the states (Länder) Schleswig-Holstein, Lower Saxony, North Rhine-Westphalia, Hesse, and Bavaria. We restrict
the sample to observations located within 100km of the ZRG border. income and business taxbase are measured in current 1,000 euros,
human capital refers to the share of residents with tertiary education, public capital and private capital measure the area share of a
municipality covered by public infrastructure (area used for streets, railway, airports, seaports, public squares, public buildings etc.) and
private structures (industry, business, and housing), respectively. industrial capital refers to the area share of a municipality covered by
industry and business structures. Note that the latter is available for only three states. Land prices correspond to current prices per
m2.
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Figure A1: Pre-treatment balancing

Economic Activity

Population per km2 1951: Income per km2 1961:

Notes: We run separate regressions on each side of the threshold. The plots represent local sample means using

non-overlapping evenly spaced bins on each side of the threshold following Calonico, Cattaneo, and Titiunik

(2015). The left figure is based on municipality data with distance to the treatment border acting as the forcing

variable in the spatial RDD. The right figure is based on district border and depicts income against the forcing

variable in the fuzzy RDD, i.e. Md (see chapter 4.2).
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Figure A2: Discontinuities: Labor

Contemporaneous effect: Persistent effect:

Notes: We run separate regressions on each side of the threshold. The plots represent local sample means using

nonoverlapping evenly spaced bins on each side of the threshold following the data-driven method for optimal

choice of the number of bins described in Calonico, Cattaneo, and Titiunik (2015). The lines represent a 4th-order

polynomial distance control function for the 65km window.
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Figure A3: Discontinuities: Capital

Contemporaneous effect: Persistent effect:

Notes: We run separate regressions on each side of the threshold. The plots represent local sample means using

nonoverlapping evenly spaced bins on each side of the threshold following the data-driven method for optimal

choice of the number of bins described in Calonico, Cattaneo, and Titiunik (2015). The lines represent a 4th-order

polynomial distance control function for the 65km window.
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Figure A4: Discontinuities: Local public investment

Contemporaneous effect: Persistent effect:

Notes: We run separate regressions on each side of the threshold. The plots represent local sample means using

nonoverlapping evenly spaced bins on each side of the threshold following the data-driven method for optimal

choice of the number of bins described in Calonico, Cattaneo, and Titiunik (2015). The lines represent a 4th-order

polynomial distance control function for the 65km window.
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Figure A5: Discontinuities: Grid Cell Data

Contemporaneous effect: Persistent effect:

Notes: We run separate regressions on each side of the threshold. The plots represent local sample means using

nonoverlapping evenly spaced bins on each side of the threshold following the data-driven method for optimal

choice of the number of bins described in Calonico, Cattaneo, and Titiunik (2015). The lines represent a 4th-order

polynomial distance control function.
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Figure A6: Discontinuities: Per-Capita Income and Land Prices

Contemporaneous effect: Persistent effect:

Notes: We run separate regressions on each side of the threshold. The plots represent local sample means using

nonoverlapping evenly spaced bins on each side of the threshold following the data-driven method for optimal

choice of the number of bins described in Calonico, Cattaneo, and Titiunik (2015). The lines represent a 4th-order

polynomial distance control function.
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B Identification strategy

B.1 Spatial RDD

We denote by Yi0 and Yi1 the potential outcomes of a municipality i in the situations
with and without transfers, respectively. Our aim is to identify the effect of a transfer
Ti which corresponds to τ = Yi0 − Yi1. As counterfactual situations for individual units
are unobservable, we aim at estimating an average treatment effect E[τi] for a group
of comparable treated and control units. Our outset represents a special case of a two-
dimensional RDD where the location of each municipality relative to the threshold is
described by latitude and longitude, Li = (Lix, Liy). Similarly, the boundary between
the treatment area A+ and the control area A− consists of an infinite number of border
points b = (bx, by) ∈ B.

Due to the geographic nature of the policy measure, assignment to treatment is a
discontinuous function of location, T = 1{Li ∈ A+}, where units east of B receive
treatment while those to the west do not. In the spatial discontinuity design, location
acts as the so-called forcing variable and we focus on the discontinuity of expected
outcome at the geographical border:

τ(b) ≡ E[Yi1 − Yi0|l = b] = lim
l+→b

E[Yi|Li = l+]− lim
l−→b

E[Yi|Li = l−], (B.1)

where l+ ∈ A+ and l− ∈ A− refer to locations in treated and control areas, respectively.
Accordingly, τ(b) identifies the average treatment effect at the border point b. In
contrast to a one-dimensional regression discontinuity design, our approach yields a
function of treatment effects evaluated at each border point b ∈ B. For most of our
analysis we consider the average treatment effect along the whole border while we explore
variations in the treatment effects across locations for sensitivity checks and to analyze
the role of agglomeration externalities for persistence.22

We implement the spatial RDD both in a parametric and in a nonparametric way. In
the former case we state the conditional expectations in (B.1) as E[Yi0|Li] = α+f(Li)+
g0(Di) and E[Yi1|Li] = α+τ+f(Li)+g1(Di) where f(Li) represents flexible polynomials
of geographic location and Di refers to the shortest distance from i’s centroid to the
treatment border (B), i.e. the perpendicular to the closest border point. The inclusion
of asymmetric distance control functions accounts for the possibility that proximity to
the treatment border influences outcomes differently for transfer recipients and non-
recipients.23 Controlling for Li may be important as units with the same distance to
B may in fact be quite different if they are located in different parts of Germany (e.g.

22See Papay, Willett, and Murnane (2011) for treatment effect heterogeneity in a two-dimensional
RDD and non-geographic context. Importantly, this design allows us to limit the estimation to border
segments where frictions at municipality borders are likely to be absent.

23By presuming symmetric functions on both sides of the RDD threshold, a kink may be misinterpreted
as a discontinuity (see Lee and Lemieux, 2010).
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Table B1: Distance & assignment variable

ZRG Non-ZRG

Mean SD Min Max Mean SD Min Max

Distance to B (Di) 22,970 15,925 88 97,603 39,811 28,465 183 99,953

Md 20.194 11.262 3 45 87.560 29.702 42 149

Notes: Distances are in meters and refer to municipality centroids. The assignment variable Md is defined as
the minimum distance (in km) from the Iron Curtain that includes the majority share of the district area. It is
determined at the district level according to the 1971 classification. Each municipality is uniquely assigned to a
district. Three districts received treatment although not being eligible according to the rule and thus generate
fuzzyness. Of those districts being eligible according to the treatment rule all received treatment. We dropped
all observations with a distance of more than 150km to the ZRG border and districts with Md > 150.

north versus south or distance to the sea, state/country borders). Thus, the regression
model is given by:

Yi = α+ g0(Di) + f(Li) + Ti[τ + g1(Di)− g0(Di)] + εi. (B.2)

Since g1(Di) − g0(Di) converges to zero for observations close to the border, the aver-
age treatment effect is captured by τ̂ . Since the credibility of the results rest on the
correct specification of the control functions, we run alternative regressions with dif-
ferent functional forms (e.g. order of the polynomials), with and without coordinate
control functions (f(Li)), for different windows around the ZRG border, and we include
border-segment fixed effects as well as state fixed effects.

The assumptions about the form of the geographic control functions can be further
relaxed by estimating the treatment effect in a nonparametric way. To do so, we employ
local linear regressions and estimate the conditional expectations at the border as stated
in (B.1). Notice that we base our estimates for E[Yi0|Li = b] and E[Yi1|Li = b] only on
observations in A+ and A−, respectively. As in the parametric approach, we condition
on the forcing variable Dib and estimate univariate local linear regressions for a set of
20 border points b1, ...,b20 which are allocated at equal distances along the border.24

The corresponding results crucially depend on the choice of bandwidth.

Table B1 reports descriptive statistics on the distance of observations from B. Al-
though the treated area corresponds mostly to a narrow band of 40 kilometers there are
treated observations in the north-east (in particular on the island Fehmarn) located at a

24We check the sensitivity of our results with 10 and 30 border points. As an alternative approach
we followed Papay, Willett, and Murnane (2011) using a bivariate nonparametric regression with the
arguments Lix and Liy. Due to the “curse of dimensionality” bivariate local linear regressions require a
much higher density of data. For this reason we favor the univariate nonparametric approach. However,
all our results are robust to the bivariate nonparametric regression approach. See Appendix, Figure B1
for a more detailed description of the nonparametric specifications.
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distance of up to 100 kilometers from the ZRG border. The closest municipal centroids
lie at about 88 and 183 meters from B for the treatment and control groups, respec-
tively.25 Due to the nature of the transfer program the distance to the ZRG border is
positively correlated with the distances to the Iron Curtain. However, as the location of
the ZRG border is determined by the districts’ shape, size, and location the correlation
between distance to B and distance to the Iron Curtain is only about 0.6 for the bound-
ary sample and reduces to less than 0.05 when we limit the sample to a 20-kilometer
window from B. This points to an important advantage of our setting, namely the clear
geographic criterion that defined the Zonenrandgebiet.

Non-parameteric identification. For the nonparametric identification strategy
we resort to local linear regressions as these are particular well-suited for inference in
the RDD (see Fan and Gijbels, 1996; Imbens and Lemieux, 2008). We employ a trian-
gular kernel function and choose different bandwidths according to optimality criteria.
We compute the distance of each municipality’s centroid to 20 (or 30) border points that
are allocated at equal distances along B as shown in Figure B1. Then, we assign munic-
ipalities to the closest border point, add border-point fixed effects, and use the distance
to the respective border point in the local linear regressions to estimate E[Yi0|Li = b]
and E[Yi1|Li = b]. All our results are insensitive to choosing 20 or 30 border points (red
dots and blue triangles in Figure B1, respectively).

As a further robustness check, we refrain from allocating border points and estimate
bivariate local linear regressions based on Cartesian coordinates. In this approach we
use a product kernel Khx(Lix − L0x)Khy(Liy − L0y) and minimize:

n∑
i=1

{Yi − α− (Lix − L0x)β1 − (Liy − L0y)β1}2Khx(Lix − L0x)Khy(Liy − L0y). (B.3)

Again, this is done separately for units west and east of B to obtain α̂ for both sides. The
pair of bandwidths is chosen according to a cross-validation criterion. In practise this
approach is less efficient than the univariate approach based on border points because
the additional dimension requires disproportionately more observations. Therefore, we
present our nonparametric results generally for the border point approach and note that
results are robust to employing bivariate local linear regressions.

25As an alternative to the centroids’ distances from B – which can be very small with narrow munic-
ipalities – we approximate the location of a municipality by the average over a sufficiently large number
of grid cells within the municipal boundaries. All our results are robust to this alternative. In this case
we split each municipality into 100m × 100m grids, determine longitude, latitude as well as distances
from B for each grid cell and take the municipal averages across grid cells to obtain g(D) and f(L).
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Figure B1: Border points

Notes: The red dots (green triangles) mark the 20 (30) border points we employ in our analysis. These are
allocated at equal distances along the ZRG border. The black lines mark the inner-German border and the state
borders. The treated states were Bavaria (B), Hesse (H), Lower Saxony (LS) and Schleswig-Holstein (SH). The
Czechoslovakian border is marked in purple. When splitting up the sample into treated units closer to the former
GDR or to Czechoslovakia we use the perpendicular distances of municipal centroids or pixels to the respective
borders.

B.2 Fuzzy RDD: Exploiting the political treatment rule

In the fuzzy RDD we exploit the fact that eligibility was governed by a clear rule:
districts that accommodated either 50 percent of its area or population within a band
of 40 kilometers to the Iron Curtain became part of the ZRG. The blue-shaded area
in Panel A of Figure 2 illustrates the 40-kilometer buffer. It is evident that the ZRG
border roughly follows the buffer. Hence, we compute an assignment variable, denoted
by Md, indicating a district’s minimum distance from the Iron Curtain that includes the
majority share of the district’s area. If exemptions from the 40-kilometer rule were not
too frequent, we should observe a jump in the probability of treatment at the threshold
M0 = 40:

P (Tid|M̃d) =

{
h1(M̃d) if M̃d ≤ 0

h0(M̃d) if M̃d > 0,
(B.4)

where M̃d = Md −M0 denotes the centered version of the assignment variable.
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We estimate the fuzzy RDD in a parametric as well as in a nonparametric fashion. In
the latter approach we estimate the conditional expectations of outcome and treatment
probability by means of local linear regressions separately for observations with M̃d >
0 and those with M̃d 6 0. We employ a triangular kernel and follow Imbens and
Kalyanaraman (2012) in choosing an optimal bandwidth h∗ that minimizes the mean
squared error of the average treatment effect.26 The parametric approach follows a 2SLS
approach where the regression equations are given by:

Yid = α+ f0(M̃d) + Tid[τ + f1(M̃d)− f0(M̃d)] + εid, (B.5)

Tid = γ + h0(M̃d) +Rd[δ + h1(M̃d)− h0(M̃d)] + νid,

where Rd = 1[Md 6 M0] indicates eligibility.27 Since the political rule is applied at the
district level d, we correct the estimated variance-covariance matrix for clustering at the
level of districts and for heteroskedasticity of arbitrary form. We limit the sample to
observations belonging to districts characterized by Md ≤ 150.

B.3 Difference-in-discontinuities specification

Our differences-in-discontinuities specification can be directly derived from (B.2), so we
have

Yit = α+ γt + g0(Di) + f(Li) + Ti[τ + g1(Di)− g0(Di) + βSt] + f(LiSt) + εit. (B.6)

Note that Ti indicates whether a municipality is located in the Zonenrandgebiet and
St is a dummy variable equal to one after the shock has occurred (post-1990 and post-
2004, respectively) and zero otherwise. Based on the insights from Redding and Sturm
(2008) that the benefits of market access are declining in distance, we include a term
that interacts the shock with location, f(LiSt). Moreover, time fixed effects γt absorb all
common per-period effects of the shocks. Table 6 shows the estimates for the coefficients
τ and β denoted by ZRG and S × ZRG in the table, respectively. The contribution of
the respective shocks for the overall discontinuity is given by β/(β + τ).

26As noted by Imbens and Kalyanaraman (2012) this procedure often leads to bandwidth choices that
are similar to those based on the optimal bandwidth for estimation of only the differences in expected
outcomes (and applying the same bandwidth to the expectations of treatment probabilities). This holds
also true in our case.

27In what follows, we will generally use linear probability models in the first stage, but the results are
very similar to those obtained with a nonlinear probability model in the first stage.
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Table C1: Local tax rates (2010)

Business tax rates Property tax rates

Coordinate control Nonparametric Coordinate control Nonparametric

2nd 3rd h∗ 2nd 3rd h∗

ZRG transfers 0.012∗ 0.000 0.014 0.032∗∗ -0.006 -0.021
(0.007) (0.008) (0.015) (0.016) (0.020) (0.029)

Adj. R2 0.30 0.30 - 0.41 0.42 -
Obs. 3,881 3,881 1,318 3,878 3,878 1,420

Notes: ∗∗∗, ∗∗, ∗ denote significance at the 1, 5, and 10 percent levels, respectively. Robust standard errors in
parenthesis. We drop all observations outside a 100km window of the ZRG border in the parametric specifications.
Columns (1)-(2) and (4)-(5) refer to parametric specifications and include state indicators. Columns (3) and (6)
refer to nonparametric specifications where h∗ denotes the optimal bandwidth computed according to Imbens and
Kalyanaraman (2012). We apply a logit transformation to business tax rates as well as property tax rates which
are bounded between zero and unity.

C Substitutive policies after 1990

We have shown that transfers to the Zonenrandgebiet led to a persistent increase in
income per square kilometer in the target region, channelled through higher capital
stock, population and employment. This outcome can be interpreted as causal if the
former ZRG border does not exhibit any other discontinuity ex post. For example, one
can think about policy makers trying to compensate households and firms in the former
treatment area in various ways. However, German municipalities do not have control
over many policy instruments. Important tax rates like income taxes are chosen at the
federal level and have to be approved by the states. And those taxes that municipalities
can set themselves are mostly too small to be relevant for location decisions. The business
tax rate is an important exception. One could hypothesize that municipalities in the
Zonenrandgebiet lowered their business tax rates after 1994 to compensate firms for the
loss in subsidies. Based on data from the German Statistical Office, Table C1 shows
that there is no discontinuity in business tax rates in 2010. Our preferred specifications
show insignificant effects. The one being significant rather points towards higher tax
rates in the Zonenrandgebiet. Property tax rates are set at the municipality level as well
but they correspond to a much lower revenue than business tax rates. Moroever, our
estimates in Table C1 suggests no significant difference between the property taxes in
formerly treated and control regions.

Further, policy makers could have decided to compensate former ZRG municipalities
by an alternative transfer scheme that substituted the old program, at least to some
extent. Table 10 and Figure C1 document that there is no discontinuity in transfer
recipience for municipalities at the former ZRG border in 2010. Taking into account
that the program was terminated in 1994 and that the former ZRG border does not
correspond to district borders while transfer intensities are determined by districts, this
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Figure C1: Transfers 1994-2010

ZRG border Inner-German border

is not surprising. Instead, as Figure C1 shows we observe a discontinuity at the former
inner-German border. This result fits into the general picture that regional transfers
moved to the new Länder after German reunification. In addition to federal trans-
fers, Figure C1 accounts for resources redistributed within states according to municipal
fiscal equalization schemes (in the case of Bavaria). These within state transfers ‘Be-
darfszuweisungen’ are at much lower scale (about 0.3 percent of the federal transfers)
and display no discontinuity at B.

D Grid-cell data

For the analysis at the fines spatial scale we use data on PrivateCapital and Radiance
for grids of 100m × 100m and 30 × 30 arc-seconds (about 900m × 600m in the center
of Germany), respectively (see details about the data in Appendix A). For a sensitivity
check about the role of frictions at municipality borders we consider three subsamples
that are arguably less prone to inter-municipality frictions. Table D1 reports in columns
(1)-(3) the contemporaneous and in columns (4)-(6) the persistent average treatment
effects of the ZRG transfers on the probability of a grid cell being covered by private
capital and on log radiance.

The first sensitivity check limits the sample to municipality pairs around the treat-
ment border that are highly connected. For this we employ data from OpenStreetMap
provided by ThinkGeo which includes all streets and roads in Germany. We drop all
small pathways and trails and use GIS techniques to extract roads that cross the ZRG
border B. Then, we compute for each municipality around B the number of roads
which cross both the ZRG border as well as the respective municipality. To adjust for
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Table D1: Robustness: Grid Cell Data

Contemporaneous effects Persistent effects

Connectedness Undeveloped Polycentric Connectedness Undeveloped Polycentric

Prob(PrivateCapital=1)

ZRG transfers 0.024∗∗∗ 0.019∗∗∗ 0.007∗∗∗ 0.023∗∗∗ 0.022∗∗∗ 0.014∗∗∗

(0.001) (0.002) (0.001) (0.001) (0.002) (0.002)
Adj. R2 0.01 0.02 0.01 0.01 0.02 0.02
Obs. 776,639 147,424 758,968 776,639 147,424 758,968

Log(Radiance)

ZRG transfers 0.222∗∗∗ 0.376∗∗∗ 0.203∗∗∗ 0.217∗∗∗ 0.241∗∗∗ 0.214∗∗∗

(0.022) (0.049) (0.035) (0.020) (0.044) (0.030)
Adj. R2 0.12 0.17 0.11 0.10 0.24 0.09
Obs. 10,626 2,790 11,579 13,037 3,296 12,665

Notes: ∗∗∗, ∗∗, ∗ denote significance at the 1, 5, and 10 percent levels, respectively. Robust standard errors in
parenthesis. We drop all observations outside a 100km window of the ZRG border in the parametric specifications.
Columns (1)-(3) and (4)-(6) refer to the contemporaneous and persistent estimates, respectively. All estimates
correspond to the parametric specifications and include asymmetric control functions of distance to the ZRG
border as well as coordinate controls. Columns (1) and (4) base on municipality pairs at the ZRG border and
in the upper 10th percentile of connectedness. Columns (2) and (5) restrict the sample to municipality pairs at
the ZRG border that are not separated by undeveloped land such as rocks, water bodies, or forests. Columns (3)
and (6) restrict the sample to polycentric municipality pairs at the ZRG border. Observations refer to grid cells
of 100m× 100m and 30× 30 arc-seconds for private capital and radiance, respectively.

municipality size this variable is weighted by municipality area. We keep only grid cells
belonging to municipalities in the upper 10th percentile of the distribution of roads cross-
ing B and the municipality. Thus the sample size drops by about 90 percent compared
to Table 8 while the point estimates (see columns (1) and (4)) remain highly significant
and well in line with those presented in Table 8.

For the second experiment we draw a buffer at 1km distance from both sides of
B. Employing land-use data from the CORINE project we calculate the share of non-
cultivable land within this buffer for all municipalities. We define as non-cultivable
land the categories 23-44 (“Forest and and semi natural areas”, “Wetlands”, “Water
bodies”). All municipalities with more then 5 percent of their land within the 1km
buffer being non-cultivable are dropped from the sample. Thus, we estimate the effect
on grid cells belonging to municipality pairs that feature homogeneous characteristics
in the neighborhood of B as the land could be developed at relatively low costs. Again
the estimates in columns (2) and (5) are not increasing substantially compared to the
benchmark in Table 8 which supports the assumption that frictions are not decisive for
our results.

The third experiment focuses on polycentric municipalities arguing that social net-
works are more dispersed in scattered neighborhoods. For each grid cell in the data set
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we calculate the number of grids in a 200, 300, and 400 meter radius that are covered by
capital structures. That is we construct a spatial lag for capitalspatlagi = W × capitalj
for j 6= i and W referring to a weight matrix with elements being unity if the distance
between i and j is less than 200, 300, or 400 meters depending on the specification
and zero otherwise. Using the municipality distributions of capitalspatlagi we refer to a
point i as a municipality center if it features the highest number of covered grid cells
in the surrounding neighborhood i.e. if capitalspatlagi corresponds to the municipality
maximum. If this binary definition of a center is unity for multiple adjacent grid cells we
aggregate these cells using ArcGIS. In case this definition yields several but non-adjacent
municipality centers (grid-cells that feature the municipality maximum of capitalspatlagi )
we refer to the municipality as a polycentric municipality. Independent of the chosen
radius, the majority of municipalities turns out monocentric according to the above def-
inition. For the estimates presented in Table D1 we use the 200 meter radius and keep
only municipalities with at least two non-adjacent centers. The treatment effects remain
highly significant and the magnitude is very similar to the benchmark. Note that this
holds also true for using the 300 and 400 meter radii.

E A simple model

In this section, we present a simple model to show that estimated discontinuities in a
spatial RD design do not include externalities if these dissipate continuously in space.
The argument has been made recently by Turner, Haughwout and van der Klaauw (2014)
in the context of land regulation. We apply this idea to regional transfers.

Consider two initially symmetric regions accommodating locations of unit measure
x between the boundaries −x̄ and x̄. The common (treatment) border is referred to by
x = 0. One region with locations x ∈ [0; x̄] receives treatment T (referred to by +) while
the other region with locations x ∈ [−x̄; 0] does not (referred to by −).28 We define
economic activity as output in location x as

Q(x) = A(x, I)I(x,A, T ). (E.7)

Output is increasing in physical inputs I(·) (for example, labor, capital, public goods or
a combination thereof) and in a production amenity A(·). We assume the production
amenity to be composed of two parts such that A(x, I) = Aext(x, I)Aown(x, I). While
the first part dissipates in space, the second component is confined to the respective
location. To ensure that there is always some economic activity in both regions, we
impose that A(·) is hump-shaped in I capturing the idea that dispersion forces domi-
nate agglomeration forces at a certain level of economic density or economic frictions
(like trade costs). For example, Aext(·) can be understood as agglomeration economies

28A region can be understood as an area composed of municipalities or as a municipality composed of
small grid cells – depending on the level of aggregation in our empirical analysis.
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stemming from knowledge spillovers, labor market pooling, supply linkages or home-
market effects, among others (Marshall, 1920, and Duranton and Puga, 2004). Aown(·),
in contrast, captures all effects on productivity that occur only under the condition of
being located in that location (e.g. better public facilities, capital structures, tax bene-
fits, etc.). Our specification of economic activity allows for hysteresis as inputs depend
on production amenities and vice versa (as e.g. in Krugman, 1991). With respect to
the second part in (E.7), we assume that (i) treatment T raises inputs and (ii) more
productive locations have an incentive to invest more, so ∂I(·)/∂A(·) > 0.29

To make both the contemporaneous and persistent effects of treatment transparent,
we evaluate the model at three distinct points in time: 1. before treatment, 2. during
treatment, and 3. after treatment.

1. Before treatment. As both regions are initially identical and T+ = T− = 0, it is
immediate that input and production amenity levels are identical. Relating (E.7) to our
empirical specification by taking logs and comparing economic activity at the treatment
border x = 0 implies: lnQ(0+) − lnQ(0−) = 0, where x = 0+ and x = 0− refer to
locations converging to x = 0 from the treatment and the control side, respectively.

2. During treatment. Now suppose that one region receives treatment T+ > 0
while T− = 0 (e.g. capital subsidies or provision of public infrastructure). This leads to
an increase in I+ in a first step while I− remains unchanged. We refer to this as the direct
input effect of treatment. In a second step, the difference in I(·) raises the production
amenity stimulating more input investments in consecutive steps until ∂A(·)/∂I(·) = 0.
We call this the self-reinforcing effect. Importantly, however, externalities do not stop
at local borders so locations close to x = 0 benefit from input intensities on both sides
of the threshold. We follow recent work by Turner, Haughwout, and van der Klaauw
(2014) by assuming that Aext(x) is a weighted average of input intensity of neighboring
locations according to

Aext(x) =
1− γ(x)

2

∫ 0−

−x̄
I(x)dx+

1 + γ(x)

2

∫ x̄

0+
I(x)dx. (E.8)

We define γ(x) to be a weakly increasing continuous function with γ(x) = −1 if x ≤
−x′ ∧ −x′ > −x̄, γ(0−) = γ(0+) = 0 and γ(x) = 1 if x ≥ x′ ∧ x′ < x̄. Hence, according
to (E.8) locations x = 0− and x = 0+ experience the same level of externality, that
is Aext(0

+) = Aext(0
−). With respect to the location-specific production amenity, we

observe a discontinuity at x = 0 due to differences in input intensities at this location.
Using these insights and taking logs of (E.7), we obtain at x = 0 a discontinuity

∆Q(0) = ∆I(0) + ∆Aown(0),

where ∆ refers to the difference in the logs of the respective variables. Importantly, the

29This feature is in line with heterogeneous firms models, e.g. Melitz (2003).
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Figure E1: Direct effect versus productivity effect
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Notes: The dashed line refers to the situation without transfers. The solid line refers to the output with transfers
and the dotted lines illustrate the “direct input effect” and the “productivity effect”. The area left of x = 0
belongs to the control group whereas observations right of x = 0 receive transfers.

observed discontinuity does not contain Aext. Note that agglomeration externalities do
raise economic activity, but it is in the nature of spatial RD identification that all con-
tinuous effects are not part of the discontinuity. Intuitively, self-reinforcing externalities
exert the same incentive for investment at x = 0+ and x = 0−. Figure E1 provides a
graphical illustration of this argument.

3. After treatment. After the end of the program, locations in the former treat-
ment region no longer receive transfers and T+ = T− = 0. Hence, for the gap in
economic activity to persist, our framework suggests two explanations: either inputs I
stay at the same level even in the absence of treatment (e.g. capital does not depreciate)
or location-specific productivity Aown remains at a higher level in the former treatment
area persistently.

The model reveals that (agglomeration) externalities cannot be part of the estimated
discontinuity if they dissipate continuously in space. More formally, γ(x) has to be
continuous function. In the main part of the paper, we undertake a number of exercises
to check the plausibility of this assumption in our context.

Finally, it is noteworthy that the implications of the model do not change if we allow
for local relocation. This would shift economic activity downwards in the control region
and upwards on the other side of the treatment border, but the estimated discontinuity
would still not include spatially continuous externalities.
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F Polynomial order & bandwidth

Table F1 presents the results for our main outcome, income per km2, across numer-
ous different specifications. In panel (I) we report specifications with distance control
functions using asymmetric 1st- to 5th-order polynomials with segment and state fixed
effects. Panel (II) displays the coordinate control specifications analogously to Table 2
but adding a version with linear control function. Panel (III) contains nonparametric
specifications without border point fixed effects but with the data being residualized on
latitude instead. Panel (IV) shows the benchmark nonparametric specifications with 30
instead of 20 borderpoint fixed effects as used in Table 2. Panel (V) performs robustness
checks for the fuzzy RDD results in Table 3 by choosing different bandwidth.
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Table F1: Robustness: Polynomial order & Bandwidth

Contemporaneous effect Persistent effect

Log income per km2 Coef. Std.err Adj. R2 AIC Coef. Std.err Adj. R2 AIC

(I) Distance control

1st order 0.149∗∗∗ (0.058) 0.21 10,798 0.161∗∗∗ (0.055) 0.20 10,508

2nd order 0.271∗∗∗ (0.079) 0.21 10,787 0.270∗∗∗ (0.075) 0.21 10,500

3rd order 0.487∗∗∗ (0.098) 0.22 10,761 0.495∗∗∗ (0.094) 0.21 10,472

4th order 0.619∗∗∗ (0.120) 0.22 10,756 0.572∗∗∗ (0.115) 0.21 10,468

5th order 0.560∗∗∗ (0.144) 0.22 10,742 0.560∗∗∗ (0.144) 0.22 10,742

(II) Coordinate control

1st order 0.206∗∗∗ (0.059) 0.17 10,972 0.209∗∗∗ (0.057) 0.17 10,673

2nd order 0.296∗∗∗ (0.080) 0.19 10,869 0.296∗∗∗ (0.077) 0.19 10,541

3rd order 0.528∗∗∗ (0.099) 0.22 10,741 0.535∗∗∗ (0.096) 0.22 10,404

(III) Nonparametric, controlling for latitude

h∗ 0.572 ∗∗∗ (0.108) - - 0.583∗∗∗ (0.117) - -

0.8 × h∗ 0.550∗∗∗ (0.122) - - 0.555∗∗∗ (0.133) - -

1.2 × h∗ 0.575 ∗∗∗ (0.099 ) - - 0.581∗∗∗ (0.105) - -

(IV) Nonparametric with 30 border point fixed effects

h∗ 0.410∗∗∗ (0.083) - - 0.392∗∗∗ (0.085) - -

0.8 × h∗ 0.380∗∗∗ (0.089) - - 0.357∗∗∗ (0.092) - -

1.2 × h∗ 0.420∗∗∗ (0.078) - - 0.401∗∗∗ (0.079) - -

(V) Fuzzy RDD, nonparametric specifications

h∗ 0.545∗∗∗ (0.143) - - 0.404∗∗∗ (0.132) - -

0.8 × h∗ 0.636∗∗∗ (0.179) - - 0.409∗∗ (0.161) - -

1.2 × h∗ 0.601∗∗∗ (0.128) - - 0.495∗∗∗ (0.119) - -

Notes: ∗∗∗, ∗∗, ∗ denote significance at the 1, 5, and 10 percent levels, respectively. The dependent variable is log

income per km2 in all specifications. For the nonparametric specifications the bandwidth h∗ is computed according

the algorithm introduced by Imbens and Kalyanaraman (2012). Panel (I) reports the results for parametric

specifications including a flexible control function of distance from the treatment boundary (Di) using asymmetric

1st- to 5th-order polynomials with segment and state fixed effects. According to the AIC the 5th order polynomial

is the preferred specification. Panel (II) reports the coordinate control function specifications as displayed in

Table 2 but adding a linear version. According to the AIC the 3rd order polynomial is the preferred specification

for the coordinate control. Note that we choose lower order polynomials for the coordinate control function f(.)

than for the distance control function g(.) because the bivariate control function requires more parameters to

be estimated than the corresponding univariate control function. Panel (III) reports nonparametric estimates

controlling for a continuous measure of latitude instead of 20 border point fixed effects as in the nonparametric

specifications in Table 2. Panel (IV) reports nonparametric estimates using 30 instead of 20 different border point

fixed effects. Panel (V) displays the results of the nonparametric version of the fuzzy RDD specifications as in

Table 3 for different bandwidths i.e. 0.8 and 1.2 times the optimal bandwidth.
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Table F2: Growth of outcomes relative to the pre-treatment period

Income growth Employment growth Population growth
Parametric Md Nonparametric Parametric Md Nonparametric Coordinate control Nonparametric
2nd 3rd h∗ 2nd 3rd h∗ 2nd 3rd h∗

ZRG transfers 0.364 0.363 0.655 0.444∗∗∗ 0.445∗∗∗ 0.597∗∗∗ 0.226∗∗∗ 0.299∗∗∗ 0.264∗∗∗

(0.241) (0.242) (0.449) (0.161) (0.163) (0.219) (0.032) (0.040) (0.034)

R2 0.01 0.01 - 0.03 0.03 - 0.20 0.22 -
AIC 629 631 - 379 381 - 3,631 3,548 .
Obs. 297 297 168 294 294 189 3,751 3,751 3,088

Notes: ∗∗∗, ∗∗, ∗ denote significance at the 1, 5, and 10 percent levels, respectively. Robust standard errors in parenthesis. We
measure growth by log difference between 1986 and 1961 for income and employment and by log differences between 1951 and 1986
for population. Regressions for income growth and employment growth are based on district level data and fuzzy RDD specifications
whereas regressions for population growth are based on municipality level data and spatial RDD specifications. Observations with
Md > 150 are dropped from the sample in the columns (1) to (6). Columns (3), (6) and (9) refer to the corresponding nonparametric
estimates where h∗ denotes the optimal bandwidth computed according to Imbens and Kalyanaraman (2012). For the nonparametric
specifications we also computed the Calonico et al. (2017) robust bias-corrected confidence bounds which confirm the conventional
estimates: The corresponding p-values are 0.105 for income growth, 0.052 for employment growth, and 0.000 for population growth.
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