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I. Defining low-carbon patents

Low-carbon innovation has long played an important role in national climate policy debates

as well as international climate change negotiations, but individual researchers had strug-

gled to settle on common metrics to measure its scale, distribution, and progress. Starting

in 2009, the European Patent Office, United Nations Environment Programme, and the

International Centre for Trade and Sustainable Development jointly undertook to create

a new patent class covering technologies that control, reduce, or prevent greenhouse gas

emissions, with the hope that this would enable more research on low-carbon innovation

and inform public policy.

The European Patent Office had patent examiners specialised in the relevant tech-

nologies, supported by external experts, conduct a series of patent searches—looking at

European and International patent classification codes, at patent abstracts, and even at

the text of the claims. These searches were used to populate a database with low-carbon

patents, and their search strategies were codified and refined over several iterations until

they yielded an automated search algorithm capable of producing reliable results. The new

patent class, labeled “Y02,” was unveiled in 2010, and this algorithm is now used to auto-

matically identify all new low-carbon technologies added to the database. The algorithm
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is maintained and updated by patent examiners with relevant technological expertise, and

any significant changes in the algorithm are applied retrospectively as well as prospectively,

to make available a consistent time-series to researchers.

Patents were originally identified for two subclasses of technologies: capture, storage,

sequestration, or disposal of greenhouse gases (Y02C), and reduction of greenhouse gas

emissions related to energy generation, transmission, or distribution (Y02E). Over time,

the class has expanded to cover a broader range of technologies, including some adaptation

technologies (Y02A) as well as some energy efficiency technologies (in Y02B and Y02D

especially, and to a lesser degree in Y02P). Table 1 provides descriptions of the current list

of technology subclasses.

The EU ETS caps direct emissions, but does not regulate adaptation, or indirect emis-

sions resulting from electricity consumption. As elaborated in the paper, I would expect

the EU ETS to give capped firms greater incentives to develop technologies that reduce

emissions directly, compared with uncapped firms. But the same cannot be said of all the

technologies represented in the Y02-class. The EU ETS is not likely to have much effect on

technologies relating to adaptation, for instance. The EU ETS could well encourage energy

efficiency innovation if it raised electricity prices, but that would likely affect capped and

uncapped firms in equal measure.

These conceptual categories are a bit fuzzy in practice. Adaptation technologies are

perhaps the easiest to separate out (Y02A), so I do not to count them as “low-carbon

patents” in my analysis. My focus is on mitigation technologies. But some of the other

subclasses are trickier, since they appear to include some mixture of emissions saving

technologies and energy saving technologies. Trickier still, about 15% of patents are tagged

in two or more subclasses, and even technologies tagged only once can have different effects

depending on their application, e.g. new building insulation materials reduce emissions in

buildings heated by traditional boilers, but save electricity for electrically heated buildings.

Clearly, no empirical definition of “low-carbon patents” can be made to align precisely with

the conceptual distinctions.

To gauge how serious this misalignment is, the last column of table 1 shows the distri-

bution of patents across subclasses, counting only UK patents filed by British firms from

2000 to 2012. I count the number of patents tagged in each subclass and divide patents

with multiple tags equally across subclasses to avoid double counting. When I do this,

I see that the subclasses most likely to contain energy efficiency technologies (Y02B and

Y02D) make up 16% of Y02 patents.
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Table 1: Technologies included in the Y02 patent class

Subclass Description Technology examples Share

Y02A Adaptation to climate change
Flood resilient electrical equipment, Plants tolerant of
drought salinity or heat, Water efficient irrigation, Early
warning systems for extreme weather events.

7.0%

Y02B Buildings

Integration of renewable energy sources in buildings, Fuel
efficient boilers, Waste heat powered water heating,
Combined cooling heat and power generation (trigeneration),
Energy efficient lighting, Insulation.

9.9%

Y02C
Capture and storage of
greenhouse gases

CO2 capture, Subterranean CO2 storage, N2O disposal,
Methane capture.

15.5%

Y02D
Information and
communication technology

Energy efficient computing, Energy-aware routing,
Power-based selection of communication route or path in
wireless communication networks.

6.5%

Y02E
Production, distribution and
transport of energy

Renewable energy generation, Biofuel production, Nuclear
power, Combined heat and power generation, Combined
cycle power, Superconducting power lines, Fuel cells,
Batteries.

30.2%

Y02P Industry and agriculture

Recycling CO2-rich gas in metals processing, Catalytic
reduction of N2O emissions from adipic acid and caprolactam
production (chemicals used in plastics and nylon), Cements
with lower clinker content, CO2 capture for large oxy-fuel
furnaces used in glass production, High-efficiency and
renewable fuel powered ceramics kilns, Agricultural methane
capture, Plants with high carbon sequestration potential,
Inventory and reporting systems for greenhouse gases.

15.2%

Y02T Transportation

High-efficiency internal combustion engines, Hybrid vehicles,
Batteries for electric vehicles, Charging systems for electric
vehicles, Weight and drag reduction technologies for
airplanes, Hydrodynamically efficient hull and propeller
designs.

23.7%

Y02W Waste and wastewater
Biogas capture and recycling, Landfill sealing and gas
capture, Production of fertilisers from organic waste,
Recycling of batteries.

5.9%

To get a better sense of the share of energy efficiency patents, I have attempted to

identify patent sub-sub-classes (down to the 10-digit level) that cover technologies that

are electrically powered or where the main application is to reduce electricity use. At the

most disaggregated level, it is possible to distinguish heating systems that use heat pumps

(typically electrically powered), as opposed to those using condensing boilers (typically gas-

fired or oil-fired). I can isolate patents for induction furnaces used in metals processing,
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for microwave oven-based industrial food processing techniques, and for other electrically

powered technologies across all industries.

I find that 15% of Y02 patents are tagged in energy efficiency sub-sub-classes, and 12%

are tagged in energy efficiency sub-sub-classes but not in other Y02 subclasses. These

12% of patents are the ones most likely to only have energy efficiency benefits, and might

therefore provide a reasonable estimate of how inflated the counts of “low-carbon patents”

might be relative to the conceptual definition. Still, since there are likely to be some

technologies with potential to reduce direct emissions even within these sub-sub-classes,

this number probably overstates problem.

Now that we have a sense of the magnitude of the discrepancy, it’s worth taking a

moment to think through the consequences. Suppose the EU ETS disproportionately

encourages emissions saving patenting for capped firms, but encourages energy efficiency

patenting in equal measure for capped and uncapped firms. The difference in the absolute

number of “low-carbon patents” filed by suitably matched capped and uncapped firms will

only capture additional emissions saving patenting. Since energy efficiency patents appear

on both sides of the ledger, they will not affect the difference between them. Even when the

patent counts include some number of energy efficiency technologies, then, the difference

in the number of low-carbon patents will measure the relative effect of the EU ETS on

emissions saving patenting. The EU ETS may affect energy efficiency patenting as well,

but this effect would be added on top of my estimate.

The share of energy efficiency technologies matters more when I try to express the

number of additional low-carbon patents in proportional terms, rather than in absolute

numbers. As we’ve just seen, the numerator only includes the additional emissions saving

patents. Ideally, my count of “low-carbon patents” in the denominator would include

only emissions saving technologies as well. The more energy efficiency patents that are

counted in the denominator, the smaller the proportional effect will appear. Because

of the unavoidable fuzziness of the categories, the proportional effect will tend to be an

underestimate true proportional effect on emissions saving technologies.

To illustrate the magnitude, suppose the true effect of the EU ETS was to add 1 extra

emissions saving patent for every 4 filed in the counterfactual scenario, a 25% increase. But

if the denominator was inflated by 12%, to take my earlier approximation, my estimated

effect would be 22.3% instead of 25%. If the denominator was inflated by 25%, my estimated

effect would be 20% instead of 25%. This gives us a rough idea of how seriously I may

underestimate the proportional effect of the EU ETS on emissions saving patents.

4



The difficulty of categorising the technologies could also influence the estimated effect on

all other non-low-carbon patents. Whenever the search algorithm fails to tag an emissions

saving patent, that patent ends up in the “other” category. Part of the EU ETS’s effect on

emissions saving technologies might then be lumped in with the effect on “other” patents.

The difference between capped and uncapped firms in the total number of patents filed

would accurately estimate the EU ETS’s relative effect on patenting, but the breakdown

between “low-carbon” and “other” would tend to understate the contribution made by

low-carbon patents.1 This is unlikely to have much influence in practice, though, since

misclassified emissions saving technologies are going to be such a small proportion of “all

other patents.”

In sum, although the Y02-class is largely made up of patents that protect new emissions

savings technologies, it does not (and cannot be made to) map onto this conceptual category

exactly. Importantly, though, the difference in the numbers of Y02-tagged “low-carbon

patents” filed by suitably matched capped and uncapped firms will capture the EU ETS’s

effect on emissions saving technologies, and omit its effect on energy efficiency and other

technologies. The proportional effect will tend to be overly conservative, which is a reason

for focusing attention on the absolute effect, even if it is sometimes harder to get a sense

of its magnitude. To the extent that the Y02-class fails to tag some emissions saving

patents, the estimate of the absolute effect will be conservative, too, and the estimate of

the program’s effect on “other” patents will be ever so slightly larger.

The difficulty of categorising technologies therefore leads to a number of potential bi-

ases, but they all point in the same direction: they make it less likely that I will find

evidence of directed technological change favouring low-carbon innovation. My compar-

isons between capped and uncapped firms should therefore be interpreted as providing

conservative estimates of the EU ETS’s effect on low-carbon patenting.

II. Multi-plant companies

The EU ETS regulates all plants that exceed a certain threshold production capacity. But

a company that operates an EU ETS plant may operate some smaller plants as well, so the

1The same holds for the difference-in-differences estimator. And both the simple- and double-difference
would be preferable to a triple-difference estimator in this context. The triple-difference would pick up the
effect on “other” patents, which may be due to misclassified emissions saving technologies, and end up with
a lower estimate instead of a higher one.
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share of regulated activities might differ across ETS firms. An ideal research design would

distinguish companies along a continuum of treatment shares and leverage the variation in

shares to study what sort of dose-response relationship characterises companies’ adoption

and innovation decisions. The presence of such a dose-response relationship would provide

further evidence that the observed differences in outcomes are indeed an effect of the EU

ETS.

I am unfortunately not in a position to perform this kind of analysis since the data

used for this study are collected at the company-level and are not broken down to the

plant-level. The only plant-level information I have used is the list of plants covered under

the EU ETS, which I have linked up to the firm-level data sets in order to identify ETS

companies (i.e. those operating at least one EU ETS plant). But these databases do not

provide comparable data on plants below the regulatory thresholds.

To learn more about the how regulated shares might vary across EU ETS companies, we

must search for other sources of plant-level information. For this purpose, I have managed

to obtain and clean a historical version of the UK’s Pollution Inventory. This database

records annual CO2 emissions from over 4,000 plants going back to 1998. It covers plants

inside the Environment Agency’s jurisdiction, which includes England but excludes Wales,

Scotland, and Northern Ireland. It therefore does not cover all ETS plants and companies.

Yet it is the only database I’ve found that provides consistent measurements of emissions

across a large sample of ETS and non-ETS plants.

Of the 445 EU ETS companies in Britain, the Pollution Inventory includes data on

plants belonging to 205 of them. They collectively operated 947 plants listed in the Pol-

lution Inventory, of which 411 (or 43%) fell under the EU ETS sometime between 2005

and 2012. More than half are single-plant firms (figure 1, left panel), so the most common

regulated share, measured by the number of plants, is obviously 100%. But the modal

share is 100% even among just the multi-plant firms. For 73% of the firms in this sample,

the EU ETS covers all of their plants. The distribution is heavily skewed by just two water

utilities that operated a large number of plants, so even though only 43% of plants are

regulated in the aggregate, the average firm has a regulated share of 85%.

But recall that the EU ETS is designed to cover the largest plants. A simple count of the

number of regulated and unregulated plants will therefore systematically underestimate the

share of regulated activity, and hence overstate the variation across firms. To address this,

I compare the CO2 emissions from each company’s ETS plants and non-ETS plants (figure

1, right panel). Overall, the ETS plants accounted for 92% of reported CO2 emissions in
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Figure 1: Multi-plant companies.
Notes: Left panel: The distribution of single-plant and multi-plant companies. Right panel: The share of CO2

emissions from ETS-plants over time. Some plants are occasionally recorded as having emissions ‘below reporting
threshold,’ which was 10,000 tonnes until 2011, and then raised to 100,000 tonnes. I have calculated upper and lower
bounds based on imputing the emissions for these plants to either zero or the threshold value, but the figures differ
by only a fraction of a percentage point. The line is plotted for the mid-point of this range. Both plots are based on
a sample of 205 EU ETS companies whose plants are covered by the UK’s Pollution Inventory.

the years leading up to the EU ETS, and 90% of the emissions from multi-plant firms.

The distribution consists of a very large number of observations at or near 100%, along

with a small number of low-lying outliers. As seen in figure 1, these shares remain stable

even after the EU ETS goes into effect, providing suggestive evidence that multi-plant

companies are not re-balancing production towards their unregulated plants.

Although the EU ETS can in theory cover any share of a company’s emissions, I find

that there isn’t much variation in practice. Based on data available for nearly half of

British ETS companies, it seems as though the EU ETS covers all or nearly all of their

emissions. This lack of variation among ETS companies implies (1) that a binary treatment

indicator provides a highly accurate approximation of the underlying continuous treatment

variable, and (2) that there does not exist sufficient statistical power to reliably estimate

heterogeneous treatment effects with respect to the share of regulated activities.

Using a binary approximation of the treatment variable does somewhat restrict one’s

ability to use my estimates for prospective policy analyses. Conceptually, the difference

between ETS and non-ETS companies measures the average treatment effect on the treated

conditional on the distribution of regulated shares. These estimates are valid for a retro-

spective policy evaluation without modification, since the distribution of treatments has
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been fixed by the actual historical policy. But my estimates would not necessarily extrap-

olate in a straightforward manner if one wanted to forecast the consequences of expansions

of the EU ETS. Such forecasts will also depends on how the distribution of regulated shares

differs from the historical sample I used. If such an expansion mainly affected single plants

that only accounted for small shares of the their operators’ emissions, the results might

well be quite different from my findings here.

The most important limitation of these estimates is that the Pollution Inventory does

not necessarily contain the universe of plants operated by these 205 ETS companies. To

the extent that they operate additional plants in Scotland, Wales, Northern Ireland, or

elsewhere in Europe, my estimates might be biased downward (if those additional plants

are predominantly in the EU ETS) or upward (if they are predominantly non-ETS). The

estimates will be biased upward to the extent that they also operate plants outside of the

31 countries that participate in the EU ETS.

III. Matching design

Matching does not provide a basis for causal identification in and of itself, any more

than least-squares regression. Matching is fundamentally a method for trimming and re-

weighting observations so that the treated and control units appear more similar along

a few select dimensions. But without a well-formulated research design, matching could

just as well end up undermining causal identification by exacerbating differences along

unobserved dimensions.

This study uses matching as a tool to isolate an underlying policy experiment. To this

end, it is useful to spell out what the analogous ‘true’ experiment would look like, and how

it relates to the EU ETS.

I start observing firms in the year 2000. At that time, every firm was a ‘potential ETS

firm.’ Then in January of 2005, imagine I was asked to choose 272 firms to enter the EU

ETS. But instead of just picking 272 firms, I selected 272 pairs of similar firms from the

pool of ‘potential ETS firms’ and I flipped 272 coins to determine which firms, one in each

pair, would become regulated. So 272 firms went from ‘potential ETS firms’ to being ‘ETS

firms,’ and another 272 went from ‘potential ETS firms’ to ‘non-ETS firms.’ In January

2007 I created 6 additional pairs from the pool of ‘potential ETS firms’ and flipped 6 coins.

In January 2008 I created 167 additional pairs and flipped 167 additional coins. The result

is a set of 445 ‘ETS firms’ and as many ex ante similar ‘non-ETS firms.’
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Next, imagine that someone accidentally deleted the list of paired controls in this

experiment. So now I have to go back to the year each ETS firm became an ‘ETS firm’—

2005 or 2007 or 2008—and search through the set of ‘potential ETS firms’ for the one that

was part of the same pair, and I call this a ‘non-ETS firm.’ Importantly, I exclude other

ETS firms when I do this search, even the ones that weren’t in the EU ETS yet. Since

I know that they ended up as ‘ETS firms,’ I know they couldn’t have been selected as

‘non-ETS firms’ in the experiment. This means that firms cannot transition from being

controls to treated.

I didn’t run this experiment, of course, and there was no list of controls to misplace.

Matching does not reconstruct a true experimental data set, then, but rather creates a

data set that looks as if it was generated by this experiment. The data set is made to look

just like if treatment had been assigned by coin flips, even though it wasn’t. Because the

coin flips didn’t actually take place, we have to worry that pairs of ex ante similar firms

might be systematically different in some unobserved but important way. Fortunately, the

EU ETS’s design tells us that the treatment received by suitably matched companies is

plausibly uncorrelated with their potential outcomes, just like in a true experiment.

The reason for this is that the EU ETS only regulates plants above certain activity-

specific capacity thresholds. The pivotal difference between an ETS company and a non-

ETS company, then, is whether or not its largest plant exceeds the threshold. Although

I do not observe plant capacities,2 I know that ETS companies must have at least one

plant with capacity in excess of the threshold, and non-ETS companies must not. The

research design in this paper is based on the assumption that, conditional on a set of key

company-level characteristics including past adoption and innovation activity, the capacity

of the largest plant a firm operates affects future adoption and innovation only through its

role in determining ETS-status.3 It follows from this that I can omit the plant capacity

and compare otherwise identical ETS and non-ETS companies. Conditional on these other

covariates, one cannot predict which firm will do more or less adoption and innovation in

the future.

2The production capacities of plants are unobserved because records of plant capacities appear not to
have been preserved. I have had several long conversations with British and European regulators to confirm
this fact beyond a reasonable doubt.

3This assumption is untestable with the available data. I have searched for evidence both for and against
this exclusion restriction in the published literature and found nothing. The absence of any significant
theoretical or empirical work on the role of plant capacity in determining adoption and innovation does
suggest that it probably isn’t thought to be important, like the vast majority of unstudied predictors.
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There is unfortunately no definitive way to determine which set of covariates one should

use to judge whether companies have similar potential adoption and innovation outcomes.

Based on the existing empirical literature, we would expect propensities for adoption and

innovation to be quite different across economic sectors, across newer and older companies,

and across larger and smaller companies, so it seems natural to want to condition on

these basic company characteristics. Additionally, adoption and innovation are dynamic

processes that exhibit a high degree of path-dependence, so past values of the outcome

variables are probably informative about future outcomes. Future outcomes may also be a

response to past non-ETS regulations, so it’s important to condition on this information as

well, if at all possible. Finally, since administrative databases tend to lack data more often

for smaller, newer, less active companies (precisely the sort of companies believed to have

different adoption and innovation propensities), it’s important to condition on missingness

rather than to treat it as a random occurrence. The hope is that, once we condition on all

these covariates, future outcomes are expected to be as good as random in the absence of

intervention.4

The matching design must also take account of variation in the timing of treatment.

One possibility is that firms could manipulate the timing of entry into the EU ETS, which

could undermine the assumption of conditional unconfoundedness. In particular, we might

imagine that firms that find adoption and innovation especially difficult rushing to sign up

for the UK ETS and CCAs in the hopes of forestalling entry into the more stringent EU

ETS. Even if control firms signed up at the same time, they might be doing so because

they expected to adoption and innovation to be especially easy, and that they could earn

some rents by entering these programs. This would bias my estimates against finding an

effect on directed technological change.

There are two important problems with this story. First, the main draw of CCAs was

that signatories earned an 80% discount on their Climate Change Levy bill. This provided

a strong incentive to sign up for CCAs whether or not a company was anticipating future

regulations under the EU ETS, and indeed, the main driver of participation was eligibility

(Martin et al., 2014). If we’re worried that EU ETS firms signed up to avoid stricter climate

regulations, it seems non-ETS firms signed up for exactly the same reason. Second, the

4Matching on these covariates should also tend to mitigate any lingering concerns about my exclusion
restriction. A control company in the same sector, of similar age and size, with similar history is probably
much more similar to the ETS company in terms of the unobserved plant capacity than a randomly chosen
non-ETS company.
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timing doesn’t fit. The list of Direct Participants in the UK ETS was determined through

an auction held in early 2002, but the related EU ETS exemption wasn’t announced until

2003. The CCA exemption was also announced in 2003, but after that point there were no

firms added to the CCA exclusion lists.5 Given the incentives and timing, then, EU ETS

firms wouldn’t and couldn’t have differentially self-selected into the UK ETS or CCAs in

order to delay entry into the EU ETS.

There are three criteria we should use to evaluate the success of any particular matched

sample. The first is the credibility of the claim that differences in treatment of ex ante

similar firms are not driven by unobserved factors that are correlated with potential out-

comes. I have tried to address this question already. Second, we want as high a degree of

covariate balance as is possible. If the covariates are poorly balanced, it becomes impossi-

ble to tell whether the difference in outcomes measures the treatment’s effect or the effect

of some other influence. It is, at least potentially, a biased estimator. Third, we want to

match as many ETS companies as possible. Covariate balance can be trivially maximised

by matching a single pair, but statistical power clearly diminishes the fewer matched pairs

we have. The fewer pairs, the higher the variance of the resulting estimates. So we care

about having a large and balanced matched sample. Greater balance eliminates potential

sources of bias, while greater sample size keeps the variance in check. We ultimately have

to make a judgement call on how to balance these conflicting objectives, and it will be

prudent to check that the results are not too sensitive to the exact choices we make.

Computationally, matching was implemented in three steps. In the first step, I used the

coarsened exact matching algorithm developed by Iacus et al. (2012) to retain only those

non-ETS companies that are close enough to at least one ETS company to have any chance

of being matched to it. Given the large number of firms and covariates I start off with, it

was computationally necessary to quickly and efficiently discard the overwhelming number

of poor candidates for matching before more sensitive (and computationally demanding)

balancing techniques could be applied.

In the second step, I used the R-function GenMatch to construct a matched set (Sekhon,

2007). It uses a genetic search algorithm to automatically canvas the space of generalised

Mahalanobis distance metrics until it finds one that maximises covariate balance. This

process automates the choice of covariate weights, taking it out of the researcher’s hands.

This method also has the advantage of producing more reliable and balanced outputs

5Based on personal communication with Environment Agency staff responsible for implementing the EU
ETS at the time.
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than regression-based propensity score models when the treated group is a particularly

unrepresentative sample of the population, when the covariate distributions are highly

skewed, span several orders of magnitude, and contain many missing values. I executed

this search without imposing any calipers beyond the exact-match restriction on economic

sector. This ensures that every ETS company will be matched to at least one non-ETS

company, whereas imposing stricter calipers up front would have resulted in automatically

discarding some number of ETS companies without locating the best match for them. This

yields a matched sample of 445 ETS companies and 473 non-ETS companies. I take the

average whenever I find more than one match so that there is a weighted average control

firm matched to each treated one.

In the third and final step, I iteratively excluded pairs that most impair covariate

balance until reasonable balance is achieved. This resulted in the removal of 42 ETS

companies for which the best matches were relatively poor. This third step amounts to

imposing calipers after-the-match, and though this may entail some loss in efficiency, it

guarantees that the final matched sample is a strict subset of the full matched sample. This

makes it much easier to examine sensitivity with respect to how sample size and balance

are traded off. Rather than re-running the whole expensive matching algorithm for an

arbitrary number of caliper choices, it is enough to check how sensitive the conclusions are

to the omission or inclusion those 42 pairs. Omitting them amounts to putting a premium

on covariate balance, while including them amounts to desiring the largest possible sample.

An important advantage of this matching algorithm is that it provides some assurance

that there isn’t a larger more balanced sample buried among the mass of discarded obser-

vations. Whether the sample I’ve got is large and balanced enough is a judgement call,

but the matching algorithm at least assures us that it’s the best there is.

The design and execution of this matching algorithm have been informed by previous

research on the determinants of adoption and innovation, as well as by computational

requirements and constraints. But aside from these ex ante justifications, at this stage an

important reason to prefer my particular matching method and constellation of covariates

is that I selected them (and the resulting matches) prior to viewing any of the post-

ETS outcomes. The selection of matches therefore could not have been influenced (even

unintentionally) by the results they would turn out to produce. Below I will discuss the

results from a number of alternative specifications suggested by colleagues, conference

participants, and anonymous referees. But since both I and they had seen the main results

before devising these robustness checks, I cannot offer the same iron-clad guarantee as I
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am prepared to offer for the main results.

IV. Additional robustness checks

A. Sensitivity to outliers

Carbon intensity, patenting, and R&D spending all have highly skewed distributions, and

this raises the possibility that my estimates might be driven by one or a few highly lever-

aged pairs. To examine the sensitivity of my estimates, table 2 reports the re-estimated

treatment effects obtained after excluding the farthest outliers for each outcome variable.

Note that an outlier can lie at either the top or bottom of the distribution, so excluding

it can either lower or raise the estimate. Relatedly, the reduction in variance that results

from its exclusion can either outweigh the reduction in sample size or not, so the statistical

significance can increase or decrease when outliers are omitted.

Table 2: Sensitivity to outliers

Main estimate Leave one out Leave five out

Efficiency
CO2 intensity (tCO2 / £1,000) 0.078 0.065 0.025

(0.063) (0.135) (0.268)

Labor intensity (employees / £1,000) -0.002 -0.002 0.002
(<0.001) (<0.001) (<0.001)

Patenting
Low-carbon patents 0.415 0.475 0.325

(0.079) (0.034) (0.063)

All other patents 0.130 0.130 0.130
(0.167) (0.203) (0.190)

R&D spending (£1,000s)
Low-carbon R&D 200.000 200.000 65.000

(0.046) (0.046) (0.084)

Total R&D 514.000 496.000 496.000
(<0.001) (<0.001) (<0.001)

Notes: The parenthetical number below each estimate is the p-value associated with a test of the null hypothesis of
zero effect.

Most notably, the estimate on CO2 intensity falls substantially in both magnitude and

statistical significance as outliers are excluded. The estimate on low-carbon patents is far

less sensitive, with the point estimates corresponding to a range of 25 to 30 additional low-

carbon patents. Moreover, excluding outliers increases statistical significance of the point

estimates on low-carbon patents. Data on low-carbon R&D is missing for most firms, and
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excluding more than just one or two outliers results in a substantial drop in the point

estimate, though the statistical significance is only moderately impaired. The estimates

on labour intensity, non-low-carbon patents, and total R&D spending are all insensitive to

outliers.

These re-estimated treatment effects provide a reason for being cautious about inferring

that the EU ETS has caused an increase in CO2 intensity. They also emphasize the

limitations of the available data on low-carbon R&D. We can have reasonable confidence

that the effect is indeed positive, but need to be more cautious in interpreting the economic

magnitude of this effect.

B. Full sample estimates

To obtain a sufficiently balanced matched sample, I ended up excluding 42 ETS firms for

which I could only find relatively poor matches. I might insist, at the other extreme, on

keeping all of the ETS firms no matter the cost to balance. This exposes me to greater risk

of conflating the EU ETS’s effects with other factors, but instead eliminates the potential

bias introduced by selection. As a matter of completeness, I re-estimate the treatment

effects here without omitting these 42 pairs.

Table 3 and figure 2 show the pre-ETS covariate balance for the full matched sample of

445 EU ETS companies and 473 non-EU ETS companies. The distribution of covariates is

unbalanced in several important dimensions. The regulated companies are more than twice

the size of their unregulated counterparts. The differences are not statistically significant

only because of the inflated standard deviation associated with adding in the outliers.

Under the equivalence ranges used for main analysis in the paper, these differences are

highly statistically significant. Even with the more forgiving standard used here, there is

strong statistical evidence that the two groups of companies have different pre-treatment

CO2-intensities, patenting, R&D spending, and regulatory histories. These differences are

obviously driven by the 42 pairs that were omitted from the main analysis.

While potential outcomes are plausibly independent of treatment for the sub-sample

used in the main analysis, the full sample appears to include regulated companies that

would not plausibly have been left unregulated in any incarnation of the EU ETS. This

makes it difficult to think of a reasonable basis for constructing empirical counterfactuals

for these companies, which is why they were omitted from the main analysis.

The limitations associated with analysing the full sample are now obvious, but even
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Table 3: Equivalence tests for all EU ETS (N = 445) and matched non-EU ETS companies (N = 473)

EU ETS Non-EU ETS Equivalence Signed-rank Paired t-test
mean mean range test p-value p-value

Company basics
Revenues (£1,000s) 754,417 420,527 ±543,983 <0.001 <0.001
Employees 2,281 1,038 ±1,216 <0.001 0.473–
Year of birth 1987 1988 ±2 <0.001 <0.001
Economic sector (3-digit) Exact match – – – –

Efficiency
CO2 intensity 0.398 0.232 ±0.103 0.531 0.892
Labour intensity 0.011 0.012 ±0.002 0.002 0.003

Patenting
Low-carbon patents 0.113 0.014 ±0.160 0.994LP 0.127
All other patents 2.603 0.723 ±2.284 0.010 0.243

R&D spending
Low-carbon patent share 0.010 0.002 ±0.009 0.999LP 0.423
R&D spending (£1,000s) 19,758 10,795 ±13,267 <0.001 0.126

Regulatory history
CCA participation 0.508 0.387 ±0.049 – –
UK ETS participation Undisclosed Undisclosed – – –
CCL bill (£1,000) 107 67 ±33 0.620 0.622
R&D support (£1,000) 1,158 1,411 ±2,047 <0.001 <0.001

so, it may be reassuring to see that the substance of my earlier conclusions are not overly

sensitive to this modification. Figure 3 and table 4 show the outcomes for the full sample

of matched companies. The trends and estimates are qualitatively consistent with those

reported in the main analysis, although the magnitudes are generally larger and the p-

values smaller. As I have outlined earlier, however, the case for attributing these larger

estimates to the EU ETS is much more problematic. They are reported here primarily for

completeness.

C. Alternative matching

The algorithm I have used to obtain matches already anticipates a number issues. First,

the GenMatch-function executes an automated search of the space of covariate weights,

ensuring that choosing differently will produce inferior balance. It isn’t clear what, if

anything, can be learned from choosing a different and arbitrary set of weights. Second,

because I didn’t impose strict calipers up front, I have been able to re-estimate my results
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Figure 2: Comparison of full sample of matched EU ETS and non-EU ETS companies
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Figure 3: Adoption and innovation of all matched EU ETS and non-EU ETS companies

Table 4: Matching estimates of the effects of the EU ETS

Hodges-Lehmann p-value
point estimate

Efficiency
CO2-intensity 0.089 0.008

Labour intensity -0.002 <0.001

Patenting
Low-carbon patents 0.680 <0.001

Other patents 0.740 <0.001

R&D spending (£1,000s)
Low-carbon R&D 521.000 0.181

Total R&D 1,024.000 <0.001
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for the full matched set, of which the main sample is a strict subset. This exercise is

equivalent to loosening all of the implicit calipers until none are binding. All except one,

that is. The main researcher-margin left to examine is my choice to match exactly on

economic sector as defined at the 3-digit level rather than at the more disaggregated 4-

digit level. Requiring matched pairs to be drawn from within the same 4-digit sector

naturally reduces the number of potential matches, and will in expectation result in a

deterioration of balance on other covariates.

Table 5 reports the pre-ETS covariate balance for the same 403 ETS companies used

in the main analysis, but this time matched to 462 non-ETS companies drawn from within

the same economic sectors as defined at the 4-digit level.6 On measures of efficiency, too,

this matched sample is more balanced than the sample used in the main analysis. But

as expected, there are more substantial imbalances on a range of other covariates. The

disparities in size, patenting, R&D spending, and past policies, are all greater.

Table 6 reports the estimates for this matched sample.7 The biggest change is in

the estimated effect on CO2-intensity. This is also the outcome we should pay the most

attention to here, because this is the main covariate for which the current sample achieves

greater balance than the sample used in the main analysis. The revised estimate is a

great deal smaller than the original, and statistically indistinguishable from zero. The

confidence interval admits a somewhat greater chance of adoption than before, but the

most likely outcome is still that there hasn’t been significant adoption. This alternative

estimate hardly contradicts the interpretation that my results should be read primarily as

evidence against widespread adoption.

The changes to the estimated effects on patenting and R&D spending are perhaps less

informative, given the greater pre-treatment imbalances in these variables (and the greater

imbalance in R&D support). The new estimates suggest a somewhat smaller effect on low-

carbon patenting but a larger effect on R&D spending. Neither estimate is significantly

different from the original estimate, nor different from zero. The signs of the point estimates

haven’t changed, and they still display the same general pattern of companies emphasising

low-carbon innovation.

It might have been alarming if re-matching within the same 4-digit economic sectors

6The quantile-quantile plots for the outcome variables are available in the replication archive at the UK
Data Service, but have not been approved for public release for reasons pertaining to rules of disclosure.

7An accompanying time-series plot for the outcome variables is available in the replication archive at the
UK Data Service, but has not been approved for public release for reasons pertaining to rules of disclosure.
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Table 5: Equivalence tests for EU ETS (N = 403) and non-EU ETS companies (N = 462) matched at the
4-digit level

EU ETS Non-EU ETS Equivalence Signed-rank Paired t-test
mean mean range test p-value p-value

Company basics
Revenues (£1,000s) 520,473 343,728 ±408,320 <0.001 <0.001
Employees 1,595 900 ±766 <0.001 0.329
Year of birth 1988 1988 ±2 <0.001 0.002
Economic sector (4-digit) Exact match – – – –

Efficiency
CO2 intensity 0.292 0.294 ±0.099 0.021 0.020
Labour intensity 0.011 0.011 ±0.002 <0.001 <0.001

Patenting
Low-carbon patents 0.019 0.005 ±0.020 0.997LP 0.123
All other patents 0.613 0.273 ±0.440 0.738 0.163

R&D spending
Low-carbon patent share 0.004 0.002 ±0.007 0.990LP 0.017
R&D spending (£1,000s) 10,193 2,354 ±6,264 <0.001 0.447

Regulatory history
CCA participation 0.479 0.340 ±0.098 – 0.982
UK ETS participation Undisclosed Undisclosed – – –
CCL bill (£1,000) 98 67 ±27 0.210 0.539
R&D support (£1,000) 845 228 ±1,060 <0.001 <0.3333

Table 6: Matching estimates of the effects of the EU ETS based on sample matched at the 4-digit level

Hodges-Lehmann p-value
point estimate

Efficiency
CO2-intensity 0.029 0.191

Labour intensity -0.002 <0.001

Patenting
Low-carbon patents 0.155 0.198

Other patents 0.630 <0.001

R&D spending (£1,000s)
Low-carbon R&D 334.500 0.158

Total R&D 2,144.000 <0.001

gave rise to a radically different set of estimates. As it is, the estimates are different enough

to raise questions about the precise magnitude of the EU ETS’s effect. But they are also
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qualitatively similar to my original estimates and do not suggest a need to revise the central

conclusions of the paper.

D. Alternative estimators

The Hodges-Lehmann estimator is a standard estimator in many disciplines (e.g. medicine

and epidemiology), and recommends itself here because its statistical logic maps directly

onto the identifying assumption in a matched study design, for its ability to cope with data-

censoring without needing restrictive or implausible assumptions on first-stage regressions,

and for its superior statistical power and robustness with highly non-Normal outcome

distributions. Even so, it may be reassuring to know that the general pattern of findings

is broadly stable with some more familiar estimators.

Table 7 reports two of the most familiar estimators: the difference-in-means and the

differences-in-differences. The estimated effects on CO2-intensity and labour-intensity,

where censoring is not a concern, are quantitatively close to the Hodges-Lehmann esti-

mates. The p-values are higher since these estimators are less powerful. The estimates on

patenting are closer to zero than the original estimates, as would be expected from the lack

of adjustment for censoring. But when converted into comparable units, the new estimates

are actually larger than the original ones. If I multiply out a 0.035 annual average increase

across the 3,047 total treated firm-years, I end up with roughly 107 additional low-carbon

patents, compared with my original estimate of 64 additional low-carbon patents. Simi-

larly, the new estimates imply roughly 420 additional non-low-carbon patents, compared

with my original estimate of 90. The new estimates suggest a larger absolute effect on low-

carbon innovation, though the emphasis on low-carbon technologies is somewhat weaker

than before. The same can be said of the estimated effects on low-carbon R&D.

Since I am only looking at simple difference-in-means here, it is straightforward to

apply regression adjustment. In particular, the matched sample is slightly unbalanced

with respect to participation in pre-ETS regulations. If these imbalances are correlated

with the outcomes, I might have misattributed some part of their effect to the EU ETS.

Table 8 therefore reports estimates based on a regression where outcomes are modelled as

a function of EU ETS status as well as the pre-ETS policy variables. There is relatively

little change in the magnitude of the estimates compared with table 7, and of course, the

estimates are statistically indistinguishable at conventional significance levels. The general

pattern of effects is stable, so it seems that the differences in past regulatory treatment
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Table 7: Mean differences and difference-in-differences

Difference-in- Difference-in-
means differences

Efficiency
CO2 intensity 0.111 0.076

(0.031) (0.150)

Labour intensity -0.002 0.000
(0.009) (0.994)

Patenting
Low-carbon patents 0.038 0.035

(0.251) (0.246)

All other patents 0.135 0.138
(0.429) (0.392)

R&D spending (£1,000s)
Low-carbon R&D 58.000 –

(0.183)

Total R&D 3,269.000 4,791.000
(0.229) (0.303)

Notes: The parenthetical number below each estimate is the associated p-value from paired t-test with a null
hypothesis of zero difference. It has not been possible to estimate the difference-in-differences for low-carbon R&D
since this variable is only observed during the post-treatment period.

do not explain variation in outcomes over-and-above the different regulatory treatment

received under the EU ETS.

Table 8: Regression estimates adjusting for pre-EU ETS differences in regulation

Regression p-value
point estimate

Efficiency
CO2 intensity 0.154 0.025

Labour intensity -0.002 0.049

Patenting
Low-carbon patents 0.035 0.291

All other patents 0.104 0.599

R&D spending (£1,000s)
Low-carbon R&D 137.000 0.188

Total R&D 1,890.000 0.684
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