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A Further policy details

A.1 More details on the individual mandate

We restrict our sample to single, childless adults because the mandate penalty is more
complicated for larger families. Here we describe these complications. Recall from Sec-
tion 1 that the monthly mandate penalty is

Penalty = 1/12max {min {[A + .5C|F,3F} , S(MAGI — tax filing threshold)} ,

where I is the flat fee, A the number of uninsured adults that month, C' the number of
uninsured children, and S the percent of income. In 2016, F' was $325 and S was 0.02.
For a given filing threshold, the penalty is therefore a function of income and the number
of uninsured adults and children. Each child counts as half an adult for the purposes of
determining the mandate penalty so we refer to the number of uninsured “adult equiva-
lents”, equal to A 4 .5C. Note that the number of uninsured adult equivalents affects the
flat fee (the first term in brackets) but not the percent of income (the second term).

Appendix Figure A.1 plots the monthly mandate penalty in 2015 as a function of in-
come and the number of uninsured adult equivalents, for a married, filing jointly tax
return (which has a filing threshold of $20,600). There are six kink points, equal to each
intersection of F'(A + .5C) with the percent of income, for A + .5C € {0.5,1,1.5,2,2.5}.
At each of the kink points, the mandate penalty increases for some margins of coverage,
but not for all margins. For example, consider a household with two adults and two chil-
dren, and income of $68,000. For this household, the percent of income payment is $79.
If there were one uninsured household member, the penalty would be $79, because the
percent of income exceeds the flat fee. A second uninsured household member would not
increase the penalty because the percent of income exceeds the flat fee for two uninsured
members. Only if the entire household were uninsured would the flat fee, $81.25, exceed
the percent of income. However, if the household’s income were $70,000, the percent of
income would always exceed the flat fee, regardless of the number of uninsured adult
equivalents. Thus there is a kink in the incentive to have the entire family covered, but no
kink in the marginal incentive to cover the first, second, or third family member.

This example shows that, for multiperson households, the mandate penalty creates
complex and fairly subtle incentives to increase coverage. In principle it is possible to ex-
amine coverage responses at each of the six coverage kinks, focusing on the relevant mar-
gin of coverage (e.g. a kink in the probability of having three or more uninsured adult
equivalents at $69,200). In practice we are concerned that households may not under-
stand the specific incentives for monthly coverage generated by the individual mandate.
We therefore focus on single households. For these households the penalty is relatively
simple—it is linear in their number of uninsured months.

A.2 More details on other income-linked insurance inducements

The Premium Tax Credit and the Advanced Premium Tax Credit: The Premium Tax
Credit (PTC) is a subsidy which may be used for purchasing an insurance plan on the



Health Insurance Marketplaces. The PTC is equal to the difference between a house-
hold’s “benchmark premiums”—the second lowest-cost silver-tier health insurance plan
available to it in the Health Insurance Marketplaces—and its expected contribution, a
percent of income specified by law that ranges from 2 to almost 10 percent. The expected
contribution is a kinked and discontinuous function of income, so for the PTC is also a
kinked and discontinuous function of income, with potential discontinuities or kinks at
100, 133, 150, 200, 250, 300, and 400 percent of the FPL. There is also a kink in the PTC
at the income level at which the expected contribution exactly equals the benchmark pre-
mium; this kink point varies across markets, since the benchmark premium varies across
markets.” To help taxpayers manage liquidity, the PTC is paid in advance, throughout
the coverage year, in the form of the Advanced Premium Tax Credit (APTC). APTC pay-
ment amounts are based not on realized MAGI, but on project income, which Marketplace
enrollees report to the Marketplace at the time of signing up for insurance. If APTC pay-
ment are too high (because realized income exceeded projected income), taxpayers must
repay the excess, with repayment limits that depend on realized income. These repay-
ment limits are discontinuous functions of income, with discontinuities at 200, 300, and
400 percent of FPL. Heim et al. (2017) provide more detail on the PTC, APTC, and repay-
ment requirements, and document income responses to the premium tax credit at the 400
percent of FPL discontinuity.

Cost-sharing reductions: Whereas the PTC helps subsidizes premiums, cost-sharing
reductions (CSRs) subsidize out-of-pocket health care expenses. For every standard silver
plan that insurers offer on the Marketplace, they must offer three additional CSR plans,
which are identical in all aspects except their cost sharing. A standard silver plan has an
actuarial value of 70 percent, meaning it covers 70 percent of expected health care costs.
The CSR plans have actuarial value of 73 percent, 87 percent, and 93 percent. Insurers
must charge the same premium for these more generous plans as they do for the base
silver plan; the government paid for the additional cost-sharing until 2018. Only low-
income people are eligible to purchase these more generous plans. People with income
between 100 and 150 percent of FPL may purchase the 93 percent actuarial value plans;
people with income between 150 and 200 percent of FPL may purchase the 87 percent
actuarial value plans; and people with income between 200 and 250 percent of FPL may
purchase the 73 percent actuarial value plans.?

Other policies: We believe that the PTC and CSRs are the most important potential
threats to identification, in the sense that they create meaningful nonlinearities in the
incentives to obtain insurance near the mandate kink point. Several other programs might
also be relevant. Medicaid eligibility of course depends on income, although eligibility is
determined in terms of rolling income throughout the year, rather than realized income.
The eligibility levels vary across states and people. In some states single, childless adults
are not eligible at any income levels, whereas children can be eligible up to 300 percent

2The PTC and the mandate penalty are assessed using slightly different modifications of AGL. The defi-
nition of MAGI for the purpose of PTC is similar to the mandate penalty, but also includes the non-taxable
Social Security income. We focus on a population aged 27-64 with MAGI between $29,425 and $47,080, so
we expect that non-taxable Social Security income is zero for nearly all our sample.

ZDeLeire et al. (2017) show that these subsidies influence plan choice on the Exchanges.



of FPL or above.?”” Importantly for our analysis, however Medicaid eligibility is assessed
on a different income basis than is mandate penalty. Medicaid eligibility depends on a
rolling average of income, assess over the previous several months. The mandate penalty
depends on realized taxable income. In practice, therefore, a household’s income for
assessing Medicaid eligibility can be quite different from its income for determining the
mandate penalty (or the PTC for that matter). For example, a temporarily low income
household can qualify for Medicaid, but have a high enough annual income that it would
be subject to the penalty if it were uninsured. This Medicaid qualification would also not
disqualify them from receiving a PTC.

Another kink in the incentive to obtain insurance comes from the tax deductibility of
employer sponsored insurance, which creates a kink in the incentive to obtain ESI at each
kink point in the income tax code. These kinks turn out not to be close to our nonlinearity
points, because the income tax applies to taxable income rather than MAGI. For exam-
ple, for a single taxpayer in 2016, the 15 percent tax bracket ran from $9,275 to $37,650 of
taxable income. For a single tax payer with one exemption claiming the standard deduc-
tion, this works out to $19,625 to $48,000 in MAGI. Other programs such as SNAP, TANEF,
and the EITC may affect insurance demand through income effects. These programs do
not have discontinuities at 138 percent of FPL, however, and at higher income levels the
benefits are generally small.

Summary: The PTC, APTC, repayment requirements, and CSRs all create kinks or
discontinuities in the incentive to obtain health insurance coverage.?® These nonlinearities
occur at even increments of the FPL: 100, 133, 150, 200, 250, 300, and 400 percent. The
mandate discontinuity and kink points occurs between these critical values, as shown in
Figure 1. It is therefore possible to separately identify the coverage effect of the individual
mandate from the coverage effects of these policies by looking within narrow windows
of FPL (133-150 percent, 200-250 percent, and 300-400 percent).

27See https://www.kff.org/health-reform/state-indicator/
medicaid-income—eligibility—-limits—for—-adults—as—a-percent-of-the-federal-poverty-level/
and https://www.kff.org/medicaid/fact-sheet/where—are-states—today-medicaid-and-chip/.
2Tebaldi (2017) studies coverage responses to the PTC in the California Marketplace, and Frean et al.
(2017) study coverage responses at a national level using the in the ACS. DeLeire et al. (2017) study coverage
responses to the CSRs.



Figure A.1: Monthly mandate penalty for multi-person households, 2015
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Notes: Source: Figure shows the monthly mandate penalty in 2015 as a function of income and the number
of uninsured adult equivalents, for a household with married filing jointly tax return. The number of unin-
sured adult equivalents is the number of uninsured adults plus half the number of uninsured children. For
some income levels and numbers of uninsured adult equivalents, insuring an additional adult equivalent
does not change the mandate penalty, because the percent of income penalty is the same for any number of
uninsured adult equivalents.



B Monte Carlo study of RKD estimators

We conducted a Monte Carlo simulation study to assess the performance of alternative
RKD estimators. The canonical RKD specification is

yi = Zad(vi — o) + Zﬁd(vz — ) x Di + &,

where v; is the running variable, D; is indicator for the running variable exceeding the
cutoff, and Bl is the kink estimate (Card et al., 2015). Our estimating equation is identical
to this, with D = 1. In estimating a regression kink design, researchers must make several
specification choices: the choice of degree D, the bandwidth £, the kernel, and whether to
allow for a discontinuity.

The theoretical econometric literature recommends using a triangular kernel for bound-
ary estimation problems such as this one. For estimating a kink, the theoretical literature
also recommends D > 2, and it has developed plug-in estimators for bandwidth choice
based on minimizing asymptotic mean squared error of the kink estimate (Imbens and
Kalyanaraman, 2012; Calonico et al., 2014). However applied researchers have favored
the uniform kernel—as the regression can then be estimated with OLS—and have found
that high degree terms and asymptotically optimal bandwidths do not necessarily per-
form well in finite samples. Applied researchers also sometimes impose continuity (i.e.
dropping the (v; — ¢)'D; term).

To determine our baseline specification choices, we conducted a Monte Carlo follow-
ing the suggestions in Card et al. (2017). The overall idea is to simulate many data sets
using a data generating process that closely resembles our data, and then compare the
performance of alternative RKD estimators across the data sets. Our data generating pro-
cess is based on a high-order polynomial approximation to the data, with a true kink
imposed. To do so, we first “dekink” the data by estimating the following regression,
separately for 2015 and 2016:

. — Ty Dyv; = Z ﬁdv + Z dedD + €;. 3)
d£1

where 7, is the estimated kink in year ¢, 0.05 in 2015 and 0.02 in 2016. Let y(v) be the
predicted value from this regression when the running variable is v.

We simulate data with a known kink 7. We consider two cases: 7 corresponding to a
semi-elasticity of 0.5, which we consider to be the middle of past estimates, and 7 corre-
sponding to a semi elasticity of 0.2, which is low but consistent with the Massachusetts
evidence. For each year and each of 1000 simulation data sets, we sampling with replace-
ment from the empirical distribution of v and ¢ in that year. Each simulation dataset is
the same size as our estimation dataset. Given the draw of v and ¢, we form the outcome
y as y(v) + € + Dtv, where 7 is the assumed kink. We then estimate several different
RKD specifications on the simulated data. For each simulated data set, we considered the
power set of the following specification choices: bandwidth equal to the full range of in-



come, the Fan-Gijbels bandwidth selector (as proposed by Card et al. (2015)), or Calonico
et al. (2014) bandwidth selector (without scale regularization); polynomial degree D = 1
or D = 2; and imposing continuity or not. Throughout we use a uniform kernel, for
consistency with the applied literature. We do not consider the bias-corrected estima-
tor of Calonico et al. (2014) because it is computationally costly and initial simulations
suggested that it lead to dramatically higher variance without large reductions in bias or
improvements in coverage rates (a result also reported by Card et al. (2017)).

Appendix Table B.1 summarizes the performance of the various estimators in the 2015
sample. The linear estimator performs well: it achieves its nominal coverage rate, and
rejects a false null 96-97 percent of the time. The Fan-Gijbels and CCT bandwidth selec-
tors choose fairly small bandwidths, $1,248 to $1,806, relative to a maximal bandwidth of
about $2,900. Relative to using the full range of the data, they have a higher RMSE and
a lower rejection rate; the coverage rate is slightly higher for the discontinuous estimator
and slightly lower for the continuous estimator. The linear estimator using the full range
of the data has the lowest RMSE. The estimators that use only relatively local informa-
tion give up some power without reducing bias. Allowing for a discontinuity results in
slightly higher bias and variance. The quadratic estimators perform substantially worse
than the linear estimators: they have higher (absolute) bias, much higher variance, and
worse coverage.”? We conclude that the linear estimator using the full range of data is
likely to perform better than the alternatives, although none of the estimators achieves
the nominal coverage rate, and this estimator has the worst coverage.

Appendix Table B.2 summarizes the performance of the estimators in the 2016 sample.
Here too we find that the linear specification using the full range of the data has the
lowest mean squared error, again with somewhat higher confidence intervals. In this
case the coverage rate of the linear estimator is below the nominal rate when we impose
continuity.

Because our 2016 estimates were statistically insignificant, we also investigated the
power of our estimator to detect small kinks. Specifically, we re-ran our Monte Carlo
simulations, but assuming a semi-elasticity of 0.2 instead of 0.5, and assuming a semi-
elasticity of 0.14. The 0.2 semi-elasticity corresponds to the estimate that Hackmann et
al. (2015) find using the Massachusetts mandate. They look at a sample of relatively
high income adults, with income above 300 percent of FPL, so we believe this is a useful
benchmark. We report the results of this simulation in Appendix Tables B.3 and B.4. The
semi-elasticity of 0.14 corresponds to our main estimate. Consistent with our other sim-
ulation results, we find that the linear estimator using the full range of data outperforms
estimators with higher order terms or tighter bandwidths. However, even for this esti-
mator, we find somewhat limited power. When we do not impose continuity, we reject a
false null in only 73 percent of iterations. Imposing continuity improves power. At the
smallest semi-elasticity we considered, 0.14, we find limited power even when imposing
continuity; we reject the false null in 74 percent of iterations. Without continuity we reject
in less than half of all iterations.

The FG bandwidth usually ends up exceeding the range of data in the quadratic case, so its performance
is the same as the estimator using the full range of data.
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Table B.1: Summary of performance of RKD estimators in Monte Carlo Simulation, 2015

. Median rvsE Coverage Bias  Variance Rejection

Estimator Bandwidth T Rate T = Rate
1) ) 3) 4) ) (6)

A. Linear estimators
BW = full, continuous - 0.264 0.939 0.009 0.264 0.963
BW = FG, continuous 1786 0.346 0.947 -0.001 0.346 0.826
BW = CCT, continuous 1204 0.431 0951 0.010 0.431 0.673
BW = full, discontinuous - 0271 0.943 0.012 0.271 0.958
BW = FG, discontinuous 1786 0.353 0.948 0.002 0.353 0.816
BW = CCT, discontinuous 1204 0.441 0.946 0.009 0.441 0.665
B. Quadratic estimators

BW = full, continuous - 1.103 0.880 0.803 1.103 0.418
BW = FG, continuous 4823 1.103 0.880 0.803 1.103 0.418
BW = CCT, continuous 1492 1.566 0.901 0.837 1.566 0.254
BW = full, discontinuous - 1.131 0.867 0.851 1.131 0.405
BW = FG, discontinuous 4823 1.131 0.867 0.851 1.131 0.405
BW = CCT, discontinuous 1492  1.598 0.897 0.867 1.598 0.259

Table summarizes the performance of 12 RKD estimators, which differ in the degree of the underlying poly-
nomial (linear or quadratic), bandwidth selector (full range of data, Fan-Gjbels, or Calonico et al. (2014)),
and whether a discontinuity is imposed. The data are generated using a true kink of 7 = 6.33 x 1072,
corresponding to a semi-elasticity of 0.5 at the mandate kink point. The coverage rate is the fraction of
confidence intervals containing this kink.



Table B.2: Summary of performance of RKD estimators in Monte Carlo Simulation, 2016

. Median rvsE Coverage Bias Variance Re€j€Ction

Estimator Bandwidth T Rate T = Rate
1) ) 3) 4) ) (6)

A. Linear estimators
BW = full, continuous - 0.139 0.898 0.069 0.139 1.000
BW = FG, continuous 2392  0.194 0913 0.067 0.194 0.997
BW = CCT, continuous 1303 0.272 0.936 0.060 0.272 0.954
BW = full, discontinuous - 0.170 0.943 0.034 0.170 1.000
BW = FG, discontinuous 2392 0.242 0.936 0.027 0.242 0.977
BW = CCT, discontinuous 1303 0.336 0.943 0.022 0.336 0.841
B. Quadratic estimators

BW = full, continuous - 0.561 0.782 -0.593 0.561 0.133
BW = FG, continuous 7495 0.569 0.809 -0.593 0.569 0.130
BW = CCT, continuous 1665 0.994 0.880 -0.586 0.994 0.070
BW = full, discontinuous - 0.697 0.726 -0.893 0.697 0.041
BW = FG, discontinuous 7495 0.712 0.755 -0.891 0.712 0.038
BW = CCT, discontinuous 1665 1.248 0.851 -0.892 1.248 0.039

Table summarizes the performance of 12 RKD estimators, which differ in the degree of the underlying poly-
nomial (linear or quadratic), bandwidth selector (full range of data, largest symmetric band, Fan-Gjbels, or
Calonico et al. (2014)), and whether a discontinuity is imposed. The data are generated using a true kink of
7 = 8.75 x 10~°, corresponding to a semi-elasticity of 0.5 at the mandate kink point. The coverage rate is
the fraction of confidence intervals containing this kink.



Table B.3: Summary of performance of RKD estimators in Monte Carlo Simulation, 2016,

assuming low semi-elasticity

. Median ruse Coverage Bias  Variance Rejection

Estimator Bandwidth T Rate T T Rate
1) 2) 3) 4) &) (6)

A. Linear estimators
BW = full, continuous - 0.360 0.897 0.170 0.360 0.913
BW = FG, continuous 2357  0.494 0.924 0.185 0.494 0.711
BW = CCT, continuous 1297  0.662 0942 0.177 0.662 0.476
BW = full, discontinuous - 0454 0.923 0.080 0.454 0.713
BW = FG, discontinuous 2357  0.619 0.936 0.083 0.619 0.464
BW = CCT, discontinuous 1297 0.845 0944 0.057 0.845 0.301
B. Quadratic estimators

BW = full, continuous - 1.370 0.790 -1.492 1.370 0.014
BW = FG, continuous 7636 1.406 0.814 -1.496 1.406 0.014
BW = CCT, continuous 1738 2.313 0.895 -1.396 2.313 0.017
BW = full, discontinuous - 1.704 0.722 -2.241 1.704 0.006
BW = FG, discontinuous 7636 1.754 0.753 -2.247 1.754 0.005
BW = CCT, discontinuous 1738 2.914 0.865 -2.306 2914 0.010

Table summarizes the performance of 12 RKD estimators, which differ in the degree of the underlying poly-
nomial (linear or quadratic), bandwidth selector (full range of data, largest symmetric band, Fan-Gjbels, or
Calonico et al. (2014)), and whether a discontinuity is imposed. The data are generated using a true kink
of 7 = 3.5 x 107?, corresponding to a semi-elasticity of 0.2 at the mandate kink point. The coverage rate is
the fraction of confidence intervals containing this kink, and the rejection rate is the fraction of confidence

intervals that exclude zero.
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Table B.4: Summary of performance of RKD estimators in Monte Carlo Simulation, 2016,
assuming very low semi-elasticity

. Median ruse Coverage Bias  Variance Rejection

Estimator Bandwidth T Rate T T Rate
@ 2) 3) 4) &) (6)

A. Linear estimators
BW = full, continuous - 0482 0.926 0.225 0.482 0.734
BW = FG, continuous 2337  0.671 0.934 0.249 0.671 0.477
BW = CCT, continuous 1304 0.963 0931 0.258 0.963 0.314
BW = full, discontinuous - 0.606 0.944 0.080 0.606 0.460
BW = FG, discontinuous 2337 0.841 0.954 0.102 0.841 0.273
BW = CCT, discontinuous 1304 1.212 0942 0.128 1.212 0.187
B. Quadratic estimators

BW = full, continuous - 1.882 0.789 -2.175 1.882 0.006
BW = FG, continuous 7493 1.925 0.826 -2.161 1.925 0.004
BW = CCT, continuous 1695 3.385 0.895 -2.173 3.385 0.016
BW = full, discontinuous - 2.363 0.720 -3.346 2.363 0.001
BW = FG, discontinuous 7493 2412 0.759 -3.337 2.412 0.000
BW = CCT, discontinuous 1695 4.300 0.861 -3.299 4.300 0.005

Table summarizes the performance of 12 RKD estimators, which differ in the degree of the underlying poly-
nomial (linear or quadratic), bandwidth selector (full range of data, largest symmetric band, Fan-Gjbels, or
Calonico et al. (2014)), and whether a discontinuity is imposed. The data are generated using a true kink
of 7 = 3.5 x 107?, corresponding to a semi-elasticity of 0.2 at the mandate kink point. The coverage rate is
the fraction of confidence intervals containing this kink, and the rejection rate is the fraction of confidence

intervals that exclude zero.
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C Additional figures

Figure C.1: Discontinuities in months insured, additional coverage types
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Notes: Figure shows the average number of months of insurance of the indicated type, in each 0.5 FPL
point bin. Sample consists of people aged 0-64 in the indicated year, living in non-expansion states. Figure
reports the estimated discontinuity, its standard error, and the implied semi-elasticity with respect to the
penalty paid.
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Figure C.2: Kinks in months insured, additional coverage types

ESI, 2015 ESI, 2016
N | Kink = 0.02 Kink = -0.05 o
o (SE = 0.01) P (SE=001) o005
Semi-el = 1.19 0@ Semi-el=-1.835- 6 o
~N - 09 g
eo®e ks
@ /.‘( @] ....m.
-~ ° /.'. .. é
0| _*° A
r. | T/e d T T 2 ) T T T
$23340 $26550 $29175  $35310 $38150 $45903
Off-Exchange, 2015 Off-Exchange, 2016
~4  Kink=-0.00 . € Kink = 0.01
(SE =0.01) on - (SE = 0.01) ,_‘-"
Semi-el=-043 | o — < Semi-el = 0.6§.”.
Pe ® -~ ‘..
o 5 ﬁ
o £ «*l o~ o %
) /o) 4 -~ ° (*.
(g /. ©
w {o -
$23340 $26550 $29175  $35310 $38150 $45903
Medicare, 2015 Medicare, 2016
o Kink = 0.00 N Kink = 0.00 °
<l (SE=0.01) > (SE = 0.00)
@ Semi-el = 0.86 Semi-el = 0.14 e
°® @ o ®e -
~e °ce o oS8
0 P e O o © ° ® = 0®
@ \.\5\.\. ~ & q - /’.’ ®e
~ - |°Ge
° o e o © °
- &% o ® o
) [ ] : @
$23340 $26550 $29175  $35310 $38150 $45903
VA, 2015 VA, 2016
© = Kink = 0.00
™ Kink = 0.01 _ e
| ®(se=0.01) “q , ° (SE=go) . e
< | ~ Sgmi-el=4.20 e o _.§em|5el.— 0 o °
@ e~ ° Q1 o R ] o~ — 0— —
~_0 @ o
(<]
g i ® ° ~ \. - .’., — @ g | ® ° b ..
: ° o °® : R
™ P S
T T T T T T
$23340 $26550 $29175  $35310 $38150 $45903

Notes: Figure shows the average number of months of insurance of the indicated type, in each $300 bin.
Sample consists of people aged 27-64 in the indicated year, without signs of ESI offer, with single person
tax returns and no dependents. Figure reports the estimated kink, its standard error, and the implied semi-
elasticity with respect to the penalty paid.
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D Further evidence on missing density

In our main discontinuity samples, we find statistically significant discontinuities in
the density of the running variable. The densities do not indicate manipulation of the
running variable, because there is no evidence for excess mass above the threshold. How-
ever they do indicate missing observations above the threshold. If this missing mass is
driven by strategic non-filing of tax returns by uninsured people trying to avoid paying
the penalty, then our RD estimates will be biased. Such strategic non-filing is unlikely to
drive our results, however, because most households have a strong incentive to file a tax
return, even if it means paying the penalty. Specifically, households can only claim their
refundable tax credits if they file a tax return. The two most important of these credits
are the earned income tax credit (EITC) and the child tax credit. The size of these credits
depends on income and family structure. For households with income near 138 percent
of the poverty line, we report in Appendix Table D.1 the sum of these credits, along with
the maximum mandate penalty the household could face in 2016.° The table shows that,
for many household structures, the refundable tax credits exceed the mandate penalty
even in the worst case, sometimes by a large amount. Therefore there is no incentive to
avoid filing, at least for some households.

This logic suggests that we should see lower filing discontinuities in households with
a stronger incentive to file. In column (2) of the table, we report the discontinuity in the
distribution of the running variable (in percents, so that differences are comparable across
groups) in 2016. (We focus on 2016 because we have the largest first stage here.) House-
holds with children have small distribution discontinuities, especially single-parent house-
holds. Often these discontinuities are statistically insignificant and in some cases they are
positive. If differential selection explained our results, we would expect to see no cover-
age discontinuity where there is no density discontinuity. But as the table shows, nearly
every group exhibits a coverage discontinuity, and in fact the group with the largest cov-
erage discontinuity shows an upward discontinuity in the density of the running variable.

3These calculations assume that all income in MAGI is earned income and that all children in the house-
hold are 17 or younger. The credits vary with household composition for two reasons. First, the child tax
credit pays $1000 per child. Second, the EITC depends on absolute income, not income relative to FPL. As
the family size increases but we fix income at 138 percent of FPL, absolute income increases, because the
poverty line increases. This reduces the EITC.
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E Robustness tests

Placebo test based on expansion states: To show the validity of our RD design, we
begin with a placebo test looking at expansion states. In these states, there is no disconti-
nuity in the mandate penalty at 138 percent of FPL, so if our model is well-specified, we
should also see no coverage discontinuity.>® We present RD plots for the placebo sam-
ple in Figure E.1. The top panels show the penalty paid per uninsured month. There is
a discontinuity of $0.35 in 2015 and $0.18 in 2016, about a twentieth of the penalty dis-
continuity in the non-expansion states. Consistent with this small first stage, we find in
the remaining panels very small discontinuities in coverage: about 0.01 months for both
any coverage and verified coverage, in 2015 and in 2016. This discontinuity is statisti-
cally insignificant, often wrong-signed, and again about a twentieth of the estimate in the
expansion states. Overall therefore this placebo tests shows no effect in the expansion
states.

Alternative bandwidths: We consider robustness to bandwidth and to alternative
specification choices. Figure E.2 shows the estimated discontinuity and its 95% confidence
interval, as a function of the bandwidth. We indicate the optimal bandwidth (computed
using the procedure of Calonico et al. (2014)) with a vertical line. In general the estimates
are not too sensitive to the bandwidth, although with a very small bandwidth we would
tind insignificant estimates in 2015.

We plot the analogous figure for the 2015 kink estimate in Figure E.3. The point esti-
mate is stable over a wide range of bandwidths. At small enough bandwidths, the point
estimate fluctuates and its confidence interval becomes quite large. The mean-squared
error optimal bandwidth of Calonico et al. (2014) is about $900. At this bandwidth, the
point estimate is 0.17, thrice as large as our main estimate, but the confidence interval is
larger still, and so the estimate is marginally significant (p = 0.08). Looking across the dif-
ferent coverage types, the point estimates are fairly stable until the bandwidth becomes
small, at which point the estimates become less stable and much less precise.*

Alternative specifications: We consider robustness to alternative specification choices:
allowing for nonlinearities in income (i.e. a quadratic or cubic), controlling for demo-
graphics (female dummy and a quadratic in age, plus filing status dummies and dum-
mies for number of exemptions in the RD sample), imposing continuity at the kink point,
and excluding people with ESI in the RK sample. The results are in Appendix Tables E.1
to E.4. The RD estimates are generally robust to alternative functional forms. In 2015, the
point estimates are similar for the linear and quadratic specifications, but fall a bit with
the cubic. In 2016 however the cubic specification yields slightly higher point estimates.
The RD results are also unchanged when we include controls.

For the kink sample, the nonlinear income terms generally produce larger estimates,

310f course, in these states, eligibility for Medicaid for childless adults ends at 138 percent of FPL, so we
might expect to see a downward discontinuity. However, as we emphasize elsewhere, Medicaid eligibility
is not determined by annual taxable income; it is determined by recent income as reported to state Medicaid
authorities. We do not expect to see a downward discontinuity in Medicaid coverage at this threshold, and
indeed we do not find one.

32We do not plot the 2016 kink estimates against the bandwidth because that figure only confirms that
the 2016 estimates are not statistically significant.
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and sometimes substantially larger ones. For example the kink in any coverage in 2015
increases by 60 percent when we include a quadratic term, and it more than doubles when
we include a cubic. The standard errors also rise, consistent with the findings from our
Monte Carlo analysis that these nonlinear terms substantially increase the MSE of our
estimates. We focus on the linear specifications because of these large standard errors,
although we find it reassuring that allowing for higher order terms would, if anything,
strengthen the conclusion that the mandate penalty increases coverage. In general the
results are not sensitive to other choices of controls. They change little when we impose
continuity or add demographic controls. The estimates typically rise when we drop peo-
ple with ESI coverage.

Extensive margin responses: As a final robustness check, we show that our results
are not sensitive to our focus on months of coverage. We re-estimate our models but
looking at the extensive margin—the probability of having at least one month of cover-
age of a given type. Generally we find very similar results. In RD samples, the estimated
semi-elasticities are about 0.17 (for any coverage) and 0.13 (for verified coverage), which
are similar to but slightly smaller than the estimates using months of coverage. The re-
gression kink estimates show a similar pattern; the semi-elasticities are roughly similar
in magnitude whether we examine months of coverage or the extensive margin of any
coverage.

Permutation test for the RKD We have found clear kinks in months of any insurance
coverage and months of verified coverage in 2015. One concern with the regression kink
approach, however, is that it may detect spurious kinks, simply due to curvature in the
relationship between the outcome and running variable (Ganong and Jager, 2018). We
assess this concern by re-estimating our RKD models, but varying the kink point across a
fine grid of placebo locations. If the kink is spurious, then we expect that our estimate is
unexceptional in the distribution of placebo estimates.

Figure E.4 shows the distribution of placebo kink estimates, for any coverage and for
verified coverage. We consider permutation kinks every $25, starting from $500 above
200 percent of FPL, and ending at $500 below 250 percent of FPL. We look in this range
because we do not believe looking elsewhere in the income distribution would be infor-
mative about the possibility of a false positive at our income level. There are likely to be
other policy-induced kinks elsewhere in the income distribution (for example, because of
the PTC). We exclude kink points near the boundaries because estimating a kink near the
boundary produces very large, very noisy estimates, because there is very little data with
which to estimate a slope on one side of the kink.

The histograms show, first, a long left tail of placebo kink points. This is generated by
the fact that placebo kink locations near the boundaries tend to produce large, negative
placebo estimates. Second, the estimated kink, shown with the vertical line, is larger than
all but a handful of the placebo kinks. The implied p-value—the fraction of placebo point
estimates that exceed the true point estimate—is 0.078 for any coverage and 0.098 for
verified coverage. The reader may worry that these p-values are small in part because of
the inclusion of the many very negative placebo kink points estimated near the boundary.
If we instead estimate p-values, but excluding placebo kink points within $1000 of the
boundary, we obtain p-values of 0.058 for any coverage and 0.118 for verified coverage.
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Figure E.1: Placebo test in expansion states
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Notes: Figure shows the average of the indicated outcome in each 0.5 FPL point bin. This is a placebo test
because, in expansion states, people on both sides of 138 percent of FPL are subject to the mandate. Sample
consists of people aged 0-64 in the indicated year, living in Medicaid expansion states. Figure reports the
estimated discontinuity and its standard error.

18



Figure E.2: Estimated discontinuity as a function of bandwidth
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Notes: Figure shows estimated discontinuity (and 95% confidence interval) in months of coverage of the
indicated type, as a function of bandwidth, for the indicated types of coverage. The vertical line is the MSE-
optimal bandwidth of Calonico et al. (2014). The estimates in the paper use a bandwidth of 5, the largest
symmetric bandwidth that avoids looking across the 133 percent of FPL discontinuity in the premium tax
credit.
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Figure E.3: Estimated kink as a function of bandwidth, 2015
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Figure E.4: Estimated kink in months insured at placebo kink points, 2015
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Notes: Figure shows estimated kink in 2015 months insured at placebo kink points. The p-value is the
fraction of placebo kinks that exceed the true estimate.
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Table E.1: Robustness of 2015 RD estimates to specification choices

(1) (2) (3) (4)
A.Y = Months any coverage
Discontinuity 0.110 0.072 0.058  0.105
(0.011)  (0.017)  (0.022) (0.011)
Semi-elasticity 0.23 0.15 0.12 0.20
B. Y = Months verified coverage
Discontinuity 0.080 0.055 0.028  0.074
(0.013)  (0.019)  (0.026) (0.013)
Semi-elasticity 0.20 0.14 0.07 0.16
D. Y = Months Exchange
Discontinuity 0.008 0.012 0.009  0.012
(0.007)  (0.011)  (0.014) (0.007)
Semi-elasticity 0.19 0.29 0.22 0.55
C.Y = Months ESI
Discontinuity 0.060 0.034 -0.040  0.065
(0.013)  (0.020)  (0.027) (0.013)
Semi-elasticity 0.31 0.17 -0.20  0.68
E. Y = Months Medicaid
Discontinuity 0.024 -0.002 0.041  0.006
(0.013)  (0.019)  (0.025) (0.011)
Semi-elasticity 0.15 -0.01 0.26 0.02
E. Y = Months off-Exchange
Discontinuity -0.005 -0.007 -0.012  -0.004
(0.004)  (0.006)  (0.007) (0.004)
Semi-elasticity -0.46 -0.65 -1.17 -0.27
Degree Linear Quadratic Cubic Linear
Controls No No No Yes

Notes: Table shows robustness of the regression discontinuity coverage estimates to alternative specifica-
tions (polynomial degree) or controls. Column (1) is the base estimates. The degree specification controls
for polynomials of the indicated degree, allowed to vary on either side of the discontinuity. The controls in
column (4) are a female dummy, a quadratic in age, and dummies for filing status and number of exemp-
tions. The sample consists of people with income between 133 and 143 percent of FPL, aged 0-64, living in

non-expansion states.
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Table E.2: Robustness of 2016 RD estimates to specification choices

(1) (2) (3) (4)
A.Y = Months any coverage
Discontinuity 0.198 0.203 0.243  0.194
(0.011)  (0.016)  (0.022) (0.011)
Semi-elasticity 0.22 0.24 0.29 0.19
B. Y = Months verified coverage
Discontinuity 0.110 0.098 0.128  0.106
(0.013)  (0.020)  (0.026) (0.013)
Semi-elasticity 0.14 0.14 0.18 0.12
D. Y = Months Exchange
Discontinuity 0.026 0.029 0.029  0.031
(0.008)  (0.012)  (0.016) (0.008)
Semi-elasticity 0.30 0.36 0.36 0.64
C.Y = Months ESI
Discontinuity 0.078 0.088 0.118  0.085
(0.014)  (0.021)  (0.028) (0.014)
Semi-elasticity 0.21 0.25 0.35 0.55
E. Y = Months Medicaid
Discontinuity 0.006 -0.020 -0.034 -0.015
(0.013)  (0.020)  (0.027) (0.011)
Semi-elasticity 0.02 -0.07 -0.11  -0.02
E. Y = Months off-Exchange
Discontinuity -0.001 -0.002 0.002  -0.000
(0.004)  (0.005)  (0.007) (0.004)
Semi-elasticity -0.06 -0.16 0.15 -0.00
Degree Linear Quadratic Cubic Linear
Controls No No No Yes

Notes: Table shows robustness of the regression discontinuity coverage estimates to alternative specifica-
tions (polynomial degree) or controls. Column (1) is the base estimates. The degree specification controls
for polynomials of the indicated degree, allowed to vary on either side of the discontinuity. The controls in
column (4) are a female dummy, a quadratic in age, and dummies for filing status and number of exemp-
tions. The sample consists of people with income between 133 and 143 percent of FPL, aged 0-64, living in

non-expansion states.
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Table E.3: Robustness of 2015 RK estimates to specification choices

(1) (2) (3) (4) (5) (6)

A.Y = Months any coverage

Kink 0.052 0.112 0.073 0.050 0.047 0.056
(0.017)  (0.069)  (0.171) (0.017) (0.017) (0.019)
Semi-elasticity 0.92 1.97 1.27 0.87 0.59 1.10
B. Y = Months verified coverage
Kink 0.029 0.210 0.061 0.030 0.023 0.027
(0.017)  (0.070)  (0.174) (0.017) (0.017) (0.019)
Semi-elasticity 0.64 4.58 1.33 0.64 0.30 0.68
C. Y = Months Exchange
Kink -0.004 0.021 0.067 -0.007 -0.008 -0.001
(0.013)  (0.054) (0.135) (0.013) (0.013) (0.016)
Semi-elasticity -0.24 1.23 397 -042 -051 -0.03
D. Y = Months ESI
Kink 0.017 0.054 0.103 0.020 0.016  0.007
(0.013)  (0.051) (0.129) (0.013) (0.013) (0.005)
Semi-elasticity 1.21 3.94 7.49 1.43 0.43 517
E. Y = Months Medicaid
Kink 0.023 0.027 -0.169  0.021  0.023  0.020
(0.009)  (0.036)  (0.089) (0.009) (0.009) (0.010)
Semi-elasticity 3.45 4.06 -2481  3.23 3.78 2.67
F.Y = Months off-Exchange
Kink -0.003 0.026 0.004 -0.001 -0.003 0.003
(0.010)  (0.038)  (0.095) (0.009) (0.010) (0.011)
Semi-elasticity -0.40 3.80 0.53 -0.16  -0.44 0.38
Degree Linear Quadratic Cubic Linear Linear Linear
Controls No No No No Yes No
Discontinuity Yes Yes Yes No Yes Yes
Include ESI? Yes Yes Yes Yes Yes No

Notes: Table shows robustness of the regression kink coverage estimates to alternative specifications (poly-
nomial degree), controls, and samples. Column (1) is the base estimates. The degree specification controls
for polynomials of the indicated degree, allowed to vary on either side of the kink. In column (4) we impose
continuity. The controls in column (5) are a female dummy and a quadratic in age. The sample consists
of people with income between 200 and 250 percent of FPL, aged 27-64, without signs of ESI offers, single
filing status, and one exemption.
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Table E.4: Robustness of 2016 RK estimates to specification choices

(1) (2) (3) (4) (5) (6)

A.Y = Months any coverage

Kink 0.020 -0.079 -0.161 0.026  0.016  0.050
(0.015)  (0.060)  (0.150) (0.012) (0.014) (0.018)
Semi-elasticity 0.29 -1.14 -2.31 0.37 0.16 0.84
B. Y = Months verified coverage
Kink -0.002 -0.164 -0.029  0.008 -0.007  0.030
(0.016)  (0.063)  (0.158) (0.013) (0.015) (0.018)
Semi-elasticity -0.04 -2.84 -0.51 0.14 -0.08 0.67
C. Y = Months Exchange
Kink 0.021 0.056 -0.126  0.014 0.019 0.013
(0.012)  (0.048)  (0.120) (0.009) (0.012) (0.015)
Semi-elasticity 1.31 3.54 -7.78 0.88 1.41 0.61
D. Y = Months ESI
Kink -0.046 -0.193 0.005 -0.036 -0.049 -0.004
(0.014)  (0.056)  (0.140) (0.011) (0.014) (0.005)
Semi-elasticity -1.87 -7.59 0.18 -147 085 -1.94
E. Y = Months Medicaid
Kink 0.012 -0.024 0.044 0.014 0.012 0.015
(0.007)  (0.027)  (0.067) (0.005) (0.007) (0.009)
Semi-elasticity 2.63 -5.03 9.47 3.14 212 2.61
F.Y = Months off-Exchange
Kink 0.006 -0.063 -0.062 0.012 0.006  0.008
(0.010)  (0.039)  (0.098) (0.008) (0.010) (0.013)
Semi-elasticity 0.64 -6.20 -6.12 1.23 0.74 0.61
Degree Linear Quadratic Cubic Linear Linear Linear
Controls No No No No Yes No
Discontinuity Yes Yes Yes No Yes Yes
Include ESI? Yes Yes Yes Yes Yes No

Notes: Table shows robustness of the regression kink coverage estimates to alternative specifications (poly-
nomial degree), controls, and samples. Column (1) is the base estimates. The degree specification controls
for polynomials of the indicated degree, allowed to vary on either side of the kink. In column (4) we impose
continuity. The controls in column (5) are a female dummy and a quadratic in age. The sample consists
of people with income between 300 and 390 percent of FPL, aged 27-64, without signs of ESI offers, single
filing status, and one exemption.
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F Exploring the ESI offer sample

Our main kink sample excludes people with signs of an ESI offer. Hence, our main
estimates do not reflect two channels through which a greater mandate penalty could
affect insurance coverage: by changing ESI offer rates, or by changing take up among
people offered ESI. Here we present evidence that neither of these channels is quantita-
tively important, at least in the context of the kink. To do so, we expand our kink samples
to include people with signs of ESI offers.

We begin by showing that there is no kink in the probably of having a sign of ESI
offer at the mandate kink point. Appendix Figure F.1 plots the fraction of people who
have a sign of an ESI offer, as a function of income. In both 2015 and 2016 the offer rate
is increasing in income but essentially smooth through the mandate kink point. In 2015
the estimated kink is -0.06, with a standard error of 0.18, meaning that each thousand
dollars of income above the kink point reduces the offer rate by 0.06 percentage points—
an economically small, statistically insignificant and wrong-signed amount. In 2016, the
estimated kink is -0.21 (standard error=0.13)—larger in absolute value, but still small and
statistically insignificant. This evidence shows that a kink in the ESI offer rate does not
bias our kink sample results (through endogenously changing our sample in the neigh-
borhood of the kink). We emphasize that this evidence is not particularly informative
about the effect of the individual mandate on ESI offers, as it is unlikely that employers
could tailor ESI offer to individual employees, and so we should not expect to see a sharp
kink in the ESI offer rate.

Next we show the effect of a greater mandate penalty among people with signs of an
ESI offer. Appendix Figure E.2 shows months of any coverage among people with signs
of an ESI offer. The figure reveals several important patterns. First, and unsurprisingly,
coverage is much higher in the offer sample than in the no-offer sample. Second, there
is some evidence curvature. Looking above the kink point only, for example, the slope
seems to decline as income rises. Third, looking locally to the kink point, the slope in 2015
appears flatter below the kink than above it, although in 2016 the pattern is ambiguous.
Taken together, these patterns indicate that perhaps there is a slight kink in 2015, but
any kink will be difficult to detect and may be sensitive to the assumed polynomial and
bandwidth.

In Appendix Table E.1, we report estimated RK models for the offer sample. We be-
gin in column (1) with the linear specification using the full range of data, which is our
main specification for the no-offer sample. The estimates are negative and statistically
significant in both years. However, the linear/full range of data specification may not
be appropriate for the ESI offer sample, with the evident curvature and larger sample
size. When we use the asymptotically optimal bandwidth, the 2015 kink becomes posi-
tive and statistically insignificant (but not small, with a semi-elasticity of 0.33); the 2016
kink remains similar (because the optimal bandwidth uses nearly all the data).

One potential concern with the specifications in columns (1) and (2) is that they do
not adequately control for the concavity evident in Figure E2. This concavity could bias
us toward finding a negative kink. In the remaining columns we therefore control for
quadratic and cubic functions of the running variable. The quadratic specification pro-
duces kinks and positive point estimates in 2015 and negative estimates in 2016, both in-
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significant. However the 2016 first stage disappears when we use control for a quadratic
in income. Likewise we see in columns (5) and (6) that the first stage is gone in both 2015
and in 2016 when we control for a cubic in income. It is therefore impossible to interpret
the reduced form kink in these specifications.

Overall, therefore, the ESI results are sensitive to specification choices. Based on the
concavity in Figure F.2, we would prefer specifications that control for higher order terms.
These specifications yield insignificant first stages and coverage kinks that are very noisy.
Given this ambiguous evidence, we remain agnostic about the effect of the penalty among
people with ESI offers at higher incomes. At lower incomes, we pool the offer and non-
offer sample, and we find significant and positive effects on ESI coverage, suggesting that
the mandate raises coverage even in ESI, at least at lower income levels.
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Figure F.1: Probability of sign of ESI offer as a function of income
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Notes: Figure shows the fraction of people with a sign of ESI offer, in each $100 bin of modified adjusted
gross income. Sample consists of people aged 27-64 in the indicated year, who filed single tax returns with
no dependents. The hollow circles indicate round number incomes ($1000 multiples); such incomes are
much more common among the self-employed, who lack signs of an ESI offer. We include dummies for
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“round number incomes” when estimate RKD models for signs of an ESI offer.

29



Figure F.2: Months insured as a function of income, signs-of-ESI-offer sample
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Notes: Figure shows the average number of months of any insurance, in each $100 bin of modified adjusted
gross income. Sample consists of people aged 27-64 in the indicated year, who filed single tax returns with
no dependents, but with signs of ESI offers.
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Table E.1: RK estimates in the ESI offer sample

Degree Linear Quadratic Cubic

Bandwidth Full CCT Full CCT Full CCT
1) (2) 3) 4) 5) (6)

A. 2015, Y= penalty per month

Kink 0750 0750 1221 1221 0762  0.762
(0.085) (0.085) (0.332) (0.332) (0.827) (0.827)
BW 2918 9020 2918 4192 2918 8744

B. 2015, Y= Months any coverage

Kink 0.020 -0018 0045 0121 0118 0.161
(0.007) (0.009) (0.026) (0.046) (0.065) (0.068)

Semi-elasticity 0258 -0244 0369 1731 1537 1115

BW 2918 2260 2918 1959 2918 2994

C. 2015, Y= Months verified coverage

Kink 0.028 -0.027 0030 0026 008  0.085
(0.008) (0.009) (0.031) (0.037) (0.077) (0.077)

Semi-elasticity 0427 -0488 0284 0204 1.284 1284

BW 2918 2596 2918 2523 2918 3790

D. 2016, Y= penalty per month

Kink 0780 0296 0.020 0020 -0.963 -0.963
(0.161) (0.210) (0.629) (0.629) (1.442) (1.442)
BW 5296 3029 5296 8514 5296 13931

E. 2016, Y= Months any coverage

Kink 0.022 -0.018 -0.023 -0.021 -0.004 -0.004
(0.004) (0.004) (0.014) (0.015) (0.035) (0.035)

Semi-elasticity 0258 -0250 -10.702 1.025 0.041  0.035

BW 5296 5334 5296 4892 5296 7367

F. 2016, Y= Months verified coverage

Kink 0.036 -0.035 -0.051 -0.056 -0.057 -0.062
(0.005) (0.010) (0.019) (0.022) (0.047) (0.048)

Semi-elasticity 0452 -1.105 -25428 1507 0580  0.546

BW 5296 2072 5296 3860 5296 6168

Table reports the estimated kink for the indicated year and outcome. For each outcome, we report linear,
quadratic, and cubic specifications (meaning we control for separate linear, quadratic, or cubic specifica-
tions), and we report estimates using the full range of data and the bandwidth of Calonico et al. (2014)
(“CCT”). When calculate coverage semi-elasticities, we use the same bandwidth for calculating the first
stage as we use for estimating the kink. The sample consists of single tax returns in 2015 or 2016 with one
exemption claimed and a sign of an ESI offer, aged 27-64, with income between 200 and 250 percent of FPL
(in 2015), or 300 and 390 percent of FPL (in 2016). Robust standard errors in parentheses. The bandwidth
we report in the full section is half the full range, bu’é 11t is not symmetric.



G Digging into the Medicaid response

We dig further into the large Medicaid response and small individual market response
by re-estimating our RK models, stratifying on Medicaid expansion status. We expect
larger Medicaid responses in states that expanded Medicaid, and larger individual mar-
ket responses in non-expansion states. We report the estimates in Appendix Table G.1.
The Medicaid response occurs almost entirely in Medicaid expansion states, in both 2015
and in 2016. Likewise, in 2016, we find the Exchange and off-Exchange responses are
concentrated in non-expansion states. In 2015, however, we find no individual market re-
sponse even in non-Expansion states. The point estimates are all statistically insignificant,
tairly small, and some are wrong signed. These estimates suggest that people respond to
a greater mandate penalty by obtaining Medicaid coverage if at all possible. Only at fairly
high income levels and in non-expansion states do we see an individual market response.

The substantial Medicaid response raise an important question: how is it that people
with income above 200 percent of FPL obtain Medicaid coverage? Medicaid eligibility is
assessed based on rolling income, with infrequent recertification, rather than on realized
annual income. It is likely that people in our sample obtain Medicaid coverage because
they found or lost a job during the year, and were temporarily eligible for Medicaid. We
expect to see the biggest increases in partial year Medicaid coverage—people with a few
more months of coverage, rather than an increase from 0 to 12 months of coverage. To
test this hypothesis, we estimate regressions of the form

Pr(Medicaid Months; <=m) = ;" + 87"v; + 55'1{v; > 0} + f5'v;1{v; > 0} +".  (4)

This is an RKD where the dependent variable is an indicator for having at most /m months
of Medicaid coverage. We expect to find larger effects on the probability having an inter-
mediate number of months of coverage (1-11). This implies that we should find less neg-
ative kinks as m grows larger. We present the estimates graphically in Appendix Figure
G.1, and we report the estimated kinks in Appendix Table G.2. The effect is largest for 0-5
months of coverage. Specifically we show the baseline CDF at the 2015 kink point, and
the new CDF induced by a $10 per month increase in the mandate penalty, along with
the new CDF’s 95% confidence interval. The baseline CDF is given by the estimates of 3°,
from Equation 4. We obtain the new CDF by adding the implied effect of a $10 penalty in-
crease to the baseline CDF. The new CDF is lower everywhere than the old CDF, implying
that the penalty shifts people towards more months of Medicaid. However the distance
between the CDFs is greatest for relatively low months of coverage. The mandate penalty
increases months of Medicaid coverage primarily at the bottom end of the coverage spec-
trum, pulling people up from zero months of coverage to 1-6 months coverage, with a
relatively smaller effect higher up.
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Figure G.1: CDF of months of Medicaid coverage, 2015
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Notes: Source: Figure shows the CDF of months of Medicaid coverage at the 2015 mandate kink point
(“baseline”) and the counterfactual CDF induced by a $10 increase in the monthly mandate penalty, along
with the 95% confidence interval.
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Table G.2: RKD estimates for CDF of Medicaid months, 2015

Kink Standard error Penalty effect

(1) (2) (3)
Pr(Medicaid months < 0)  -0.222 (0.092) -0.133
Pr(Medicaid months <1) -0.218 (0.089) -0.131
Pr(Medicaid months < 2)  -0.222 (0.086) -0.133
Pr(Medicaid months < 3)  -0.231 (0.084) -0.138
Pr(Medicaid months < 4)  -0.229 (0.082) -0.138
Pr(Medicaid months < 5)  -0.219 (0.080) -0.131
Pr(Medicaid months < 6)  -0.198 (0.078) -0.119
Pr(Medicaid months < 7) -0.183 (0.076) -0.110
Pr(Medicaid months < 8)  -0.143 (0.074) -0.086
Pr(Medicaid months < 9)  -0.145 (0.072) -0.087
Pr(Medicaid months < 10) -0.151 (0.070) -0.091
Pr(Medicaid months < 11) -0.143 (0.067) -0.086

The sample consists of single tax returns with 2015 income between 200 and 250 percent of FPL, with one
exemption claimed, no signs of ESI offers, aged 27-64. Each row is a separate regression; the outcome is an
indicator for having at most the indicated number of months of Medicaid coverage on income (multiplied
by 100). The independent variable is 2015 income (in thousands), allowing for a kink and discontinuity
at the 2015 kink point. Column (1) shows the estimated kink, column (2) shows the standard error, and
column (3) shows the implied effect of an extra dollar of penalty per month, which is kink/20 * 12.
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H Imperfect expectations and ignorance of the penalty do
not explain our low sensitivity

H.1 Rational but imperfect expectations

Our model of accounting for imperfect expectations allows for only two possibilities:
perfect expectations for some, and non-rational expectations for others. It is possible that
some people have imperfect but rational expectations, but these people would not con-
tribute to the discontinuity when we use lagged income as the running variable, because
they would not expect a first stage discontinuity. However, we do not find evidence that
some people have imperfect but rational expectations. We test for such people by strati-
tying our sample according to measures of income uncertainty: the number of W2s and
the presence of unemployment insurance income. The idea here is that income is much
easier to predict for people with a single job (i.e. a single W2) and no job loss (i.e. no
unemployment insurance income). We begin by defining “predictable” earners, people
in households with at most one W2 per earner, and no unemployment insurance income.
About three quarters of the sample meets this definition. If people make imperfect but
rational forecasts of the penalty, then we would expect to find much larger penalty sensi-
tivities among predictable earners, because for them realized income, which we observe,
is likely close to expected income, the unobserved but theoretically desirable running
variable.

We provide two pieces of evidence to suggest that our measure of predictability is
valid. First, the change in income is more tightly concentrated around zero for pre-
dictable earners than for non-predictable earners, as can be seen in Appendix Figure H.2,
which shows the distribution of income growth rates for predictable and non-predictable
earners. Second, income is indeed much more predictable for this group than for non-
predictable earners. For example, when we regress income in year ¢ on a degree 7 poly-
nomial in lagged income, interacted with year and filing status dummies, we obtain an
R? of 60 percent for predictable earners but only 37 percent for non-predictable earners.

Of course, both these facts indicate that income and family structure alone do not per-
fectly predict next year’s income, even among predictable earners. Nonetheless we think
that looking at predictable earners is useful for two reasons. First, if expectations error in
the running variable are a serious source of bias, we should still see larger discontinuities
for predictable earners, for whom there is less measurement error. Second, predictable
earners as we define them may experience idiosyncratic increases in income, for example
coming from raises or promotions. If these idiosyncratic income changes are predictable
to the people in our data (given their private information), then realized income is still
the appropriate running variable, even if we cannot predict these income changes given
our limited information.

To test the importance of income expectations for our low semi-elasticity, we re-estimate
our main RD models, separately for predictable and non-predictable earners. The results
are in Table H.1, and we show the RD plots in Figure H.1. We see large and statistically
significant differences between predictable and non-predictable earners but, surprisingly,
it is the predictable earners who are less responsive to the penalty. Their semi elasticity
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is 50 to 100 percent lower than non-predictable earner’s, depending on the specification.
This low responsiveness does not arise from high baseline coverage rates; predictable
earners’ coverage rates are only 3 percent higher. Nor is it an artifact of self-reported
coverage or access to ESI; we find similar differences across coverage categories.

These results suggest that income unpredictabiltiy does not necessarily explain our
low semi-elasticity. This conclusion, however, is potentially sensitive to our (admittedly
arbitrary) classification of “predictable” and “non-predictable.” As an alternative approach,
we divide our data up into cells defined by unemployment insurance receipt (yes/no),
number of W2s (zero, one, or two or more), filing status (single, married filing jointly,
head of household, other), and year. Note that our “predictable” measure is a coars-
ening of these cells. For each cell, we estimate the predictability of income (wit the R*
from a regression of income on a degree 7 polynomial in its lag), and we estimate our
main RD model for coverage (continuing to use a 5-FPL point bandwidth). In Appendix
Figure H.3, we plot the estimated semi-elasticities against income predictability for each
cell. The figure shows no apparent relationship between the semi-elasticity and income
predictability, although a weak relationship would be hard to see because some of the
estimates are noisy. To more precisely measure the relationship between penalty respon-
siveness and income predictability, we regress cell-level semi-elasticity against cell-level
R%. We obtain a constant of 0.19 and a slope of -0.59; that is, semi-elasticities and pre-
dictability are negatively correlated.®

These results show that people with more predictable income do not exhibit a substan-
tially greater coverage discontinuity. Of course, an important caveat is that there may be
unobserved factors correlated with income predictability that lead to low responsiveness;
such factors would muddy the interpretation of these results. Nonetheless, this finding is
consistent with the view that imperfect but rational forecast errors are not a major factor
in explaining our low semi-elasticity estimates.

H.2 Imperfect knowledge of the penalty

Another possible explanation for our relatively low semi-elasticity is that people are
simply unaware of the mandate’s existence. If this ignorance is permanent, then our
estimates would still reflect the long-run effect of the mandate. If, however, people have
learned about the mandate in recent years, then our estimates might understate the long-
run effect of penalty. To provide some evidence on the role of knowledge of the penalty,
we consider whether people who paid the penalty in the past—and were therefore likely
aware of the penalty—respond more to penalty in a given year. Of course, people who
paid the penalty in the past could not have been insured for the whole year. So to make
the comparison clean, we look only at people who were not insured for the whole year,
comparing responsiveness to the mandate among those who did and did not pay the
penalty in the past. Specifically, we merge in to the 2015 and 2016 data information on
penalty paying in 2014, along with an indicator for self-reported whole-year coverage, i.e.
for checking the coverage box on Form 1040.

33We weight by the inverse of the standard error, to down weight the cells where we have less statistical
precision.
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Table H.2 shows the RD estimates for 2015 and 2016 coverage for three groups: people
who “checked the box” reporting full year coverage, people who did not check the box
but did not pay a penalty, and people who did not check the box and paid the penalty.
We present the RD plots in Figure H.4. The results show that, among the uninsured in
2014, people who did and did not pay the penalty had fairly similar coverage rates in 2015
and 2016, but people who paid the penalty were if anything less responsive than people
who did not pay the penalty; they have lower discontinuities and, especially, lower semi-
elasticities.

Under the assumption that people who previously paid the penalty are fully informed
of the penalty, these results do not support the view that widespread ignorance of the
penalty explains our low semi-elasticities. That is, if people who paid the penalty are
tully aware of it, then people who didn’t pay the penalty should also be fully aware (be-
cause they are more responsive to the penalty) so ignorance of the penalty cannot be
widespread. Of course, an alternative interpretation of these results is that people who
paid the penalty are not particularly aware of it. We cannot rule out this possibility—
it could be that people simply answer questions in their tax software, and pay the final
amount. Nonetheless, the evidence here is consistent with the view that people are rea-
sonably aware of the penalty.
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Figure H.1: Months of coverage by type, stratifying on income predictability
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Notes: Figure shows the average number of months of insurance of the indicated type, in each 0.5 percent
of FPL bin, separately for predictable earners and not predictable earners. Predictable earners are defined
as people living in households with no unemployment insurance income and at most one W2 per earner.
Sample consists of people aged 0-64, pooling 2015-2016.
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Figure H.2: Change in log income, predictable and non-predictable earners
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Notes: Figure shows the distribution of the change in log income for predictable and non-predictable earn-
ers. Each bin is 0.001 points wide. Not shown are changes greater than 50 percent in absolute value. About
18 percent of the non-predictable are in this category, and 17 percent of predictable earners. The sample
consists of people aged 0-64 in 2015 or 2016, with income between 110 and 160 percent of FPL, living in
non-expansion states. Predictable earners are defined as having at most one W2 per earner and no unem-
ployment insurance income.
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Figure H.3: Income predictability and responsiveness to the mandate penalty
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Notes: Each point is a cell defined by uninsurance receipt (yes/no), number of w2s (zero, one, or two or
more), filing status (single, married filing jointly, head of household, other), and year. For each cell, we
estimate semi-elasticities using our RD model and a 5-FPL point bandwidth, and we plot the estimated
semi-elasticity on the y-axis. On the x-axis, we plot income predictability, measured as the R? from a
regression of income on a degree seven polynomial in its lag. The size of each point is proportional to the
inverse of the standard error of the semi-elasticity estimate. We also report the estimate from a weighted
least squares regression, where the weights are the inverse of the standard error.
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Figure H.4: Penalty paid and months of coverage, stratifying on past experience with the

penalty
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Notes: The figures plot the indicated outcome against income, separately for people who did and did not
pay the mandate penalty in 2014. Sample is limited to people who indicated in 2014 that they did not have
full-year coverage. The sample pools 2015 and 2016, and consists of people aged 0-64.
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Table H.1: Coverage discontinuities by income predictability

#in Mean Discontinuity Standard Semi-elasticity
group  months error
Group (1) (2) (3) (4) )

A. Any coverage

Not stable 1,352,328  9.61 0.201 (0.015) 0.303
Stable 3,584,356  10.03 0.132 (0.009) 0.189
p-value of equality 0.000

B. Verified coverage

Not stable 1,352,328  8.00 0.157 (0.018) 0.284
Stable 3,584,356  8.24 0.069 (0.011) 0.121
p-value of equality 0.000
C. Exchange
Not stable 1,352,328  1.18 0.037 (0.012) 0.453
Stable 3,584,356  0.78 0.011 (0.006) 0.201
p-value of equality 0.044
D. ESI
Not stable 1,352,328  3.36 0.112 (0.017) 0.482
Stable 3,584,356  4.26 0.047 (0.012) 0.158
p-value of equality 0.002

Notes: Table reports the estimated discontinuity in coverage, as well as the semi-elasticity, estimated sep-
arately for predictable earners and not predictable earners, and the p-value for the test that discontinuities
in each group are equal. Sample consists of people aged 0-64 living in non-expansion states with income
between 133 and 143 percent of FPL. To maximize power, we pool 2015 and 2016 and include a year dummy
variable.
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Table H.2: Coverage discontinuities, stratifying on past experience with the mandate

#in Mean Discontinuity Standard Semi-elasticity
group  months error
Group 1) 2) ©) (4) ()
A. Any coverage

Checked box 2,874,287  11.20 0.092 (0.007) 0.133
No box, no penalty 1,058,551 7.93 0.191 (0.021) 0.353
No box, penalty 605,539 7.95 0.131 (0.028) 0.199
p-value (box vs. no box, no pen) 0.000

p-value (box vs. no box, pen) 0.165

p-value (no box, no pen vs. no box, pen) 0.082

B. Verified coverage

Checked box 2,874,287  9.60 0.053 (0.010) 0.089
No box, no penalty 1,058,551 6.25 0.117 (0.022) 0.273
No box, penalty 605,539 6.34 0.083 (0.028) 0.157
p-value (box vs. no box, no pen) 0.008

p-value (box vs. no box, pen) 0.321

p-value (no box, no pen vs. no box, pen) 0.334

C. Exchange

Checked box 2,874,287  0.83 0.009 (0.007) 0.181
No box, no penalty 1,058,551 1.09 0.043 (0.013) 0.575
No box, penalty 605,539 1.19 0.026 (0.017) 0.267
p-value (box vs. no box, no pen) 0.019

p-value (box vs. no box, pen) 0.350

p-value (no box, no pen vs. no box, pen) 0.437

D. ESI

Checked box 2,874,287 546 0.045 (0.013) 0.132
No box, no penalty 1,058,551 2.03 0.045 (0.016) 0.326
No box, penalty 605,539 1.89 0.046 (0.021) 0.296
p-value (box vs. no box, no pen) 0.979

p-value (box vs. no box, pen) 0.941

p-value (no box, no pen vs. no box, pen) 0.961

Notes: Table reports the estimated discontinuity in coverage in 2015 and 2016, as well as the semi-elasticity,
estimated separately for three groups: people who checked the box in 2014 to indicate full-year coverage;
people who did not check the box and did not pay a mandate penalty; and people who did not check the
box and paid a penalty. Table also reports the p-value for the test that discontinuities in each group are
equal Sample consists of people aged 0-64 living in non-expansion states with income between 133 and 143
percent of FPL. To maximize power, we pool 2015 and 2016 and include a year dummy variable.

44



