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Figure A1 – Quality of Death Registration Records 
 

 
 

Notes: We conducted two separate analyses to assess the quality of Mexico’s vital registration records 
during our study period. First, we examined the number of death records for which the cause of death was 
missing or not coded, finding that 0% of death records had missing causes. Second, we assessed the 
prevalence of causes of death coded as “ill-defined or unknown causes of mortality” over time, which we 
plot in the above Figure. While the share does decline slightly after 1990, the prevalence of unknown cause 
codes is less than 1% through the period. We note that these analyses do not address the potential for 
changes in the completeness of recording deaths from any cause and more accurate attribution and 
assignment of causes of death over time.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0
.2

.4
.6

.8
1

Pe
rc

en
t (

%
) C

od
ed

 "I
ll-

D
efi

ne
d 

or
 U

nk
no

w
n"

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
Year of Record



 3 

Figure A2 – National Trends in Under-5 Deaths for Control Diseases 
 

 
  

Notes: Figure plots national trends logged under 5 deaths from diarrheal diseases (black circles), 
respiratory control diseases (light grey diamonds), and non-infectious diseases (dark grey squares) for the 
period 1979-1997 using data from the Mexican Vital Statistics registry. We plot logged number of deaths 
instead of death rates here because municipality level data on the number of births each year are not 
available prior to 1985. As noted in the main text, we formally tested for structural breaks for each disease 
between 1985-1995 (Quandt 1960), remaining agnostic about the exact break point in the time series. 
Specifically, we calculate the F-statistic on different user-specific break points in the window, with the 
largest F-statistic across tests of different time points is used to identify the break point. We ran these tests 
after detrending the time series using the estimated linear time trend over 1979-1985, after which the null 
hypothesis of a unit root in the time series prior to any structural breaks was rejected by an augmented 
Dickey-Fuller test (e.g., see Hansen 2001). We found a statistically significant trend break for diarrheal 
diseases in 1991, which is timed exactly with PAL (F = 7.82, p = 0.013). We do not find evidence of any 
trend breaks timed with PAL for either respiratory diseases (break year 1987, F = 2.76, p=0.12) or non-
infectious childhood diseases (break year 1989, F = 6.92, p=0.018). 
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Figure A3 – Heterogeneous Treatment Effects by Pipe Breaks (Measured in 2005) 
 

 
Notes: Panels plot event study estimates of PAL impacts on under-5 diarrheal disease mortality rates from versions 
of Equation (1) that that include interactions with a direct measure of piped water infrastructure quality, pipe main 
breaks per kilometer of piped water infrastructure. These data, described in the notes to Figure 7, were obtained from 
the International Benchmarking Network for Water and Sanitation Utilities (IB-NET, http://www.ib-net.org/) and are 
available for only 16 municipal water systems (compared to 1,429 in our main analyses) and only for the year 2005. 
Consequently we treat these estimates as suggestive. The figure plots marginal effect estimates for municipalities 
below (black) and above (grey) the median of the pipe breaks measure. Treatment effect estimates are larger in 
magnitude where pipe breaks are lower. However, these differences are not statistically significant given the small 
sample size. 
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Table A1 – Difference in Difference Estimates Using Quartic Transform of Mortality Rates 
 

 
 
Notes: Models are identical to those presented in Table 3 of the main text, except here we use the quartic root 
transform of instead of the inverse hyperbolic sine. Robust standard errors, correcting for clustering at the 
municipality level, are provided in parenthesis. All models include municipality and year fixed effects.  
Importantly, the coefficient estimates cannot be interpreted in the same way as a log transform or inverse hyperbolic 
sine. Given difficulties in getting generalized linear model versions of these regression to converge, we were unable 
to calculate marginal effects for these coefficients. Nevertheless, we note that the substantive findings remain similar 
to those presented in the main text.  
 
 

 
Table A2 – Difference in Difference Estimates Using Death Counts 

 

 
 

Notes: This table is identical to Table 3 in the main text except here we data on death counts between 1985-1995. 
We use a negative binomial model to model the number of deaths. We use the estimated coefficients to calculate the 
percent relative decline in diarrheal deaths. These estimated effects are substantively similar except for models 
examining deaths from all-causes, for which estimates suggest smaller (and statistically insignificant) effects. 
Robust standard errors, correcting for clustering at the municipality level, in parenthesis. 

 
 
 
 

 
 
 

Outcome Diarrheal Diseases Diarrheal Diseases Diarrheal Diseases All Diseases
Control Group Respiratory Diseases Non-Infectious Diseases Large Cities Large Cities

1(Diarrhea)*1(Post) -0.065 -0.088 1(Small)*1(Post) -0.056 -0.167
(0.025) (0.026) (0.086) (0.083)

1(Diarrhea)*1(Post)*Year -0.045 -0.066 1(Small)*1(Post)*Year -0.078 -0.067
(0.009) (0.009) (0.022) (0.045)

N 31,082 31,082 N 15,717 15,717
R-squared 0.44 0.3 R-squared 0.45 0.54

Outcome Diarrheal Diseases Diarrheal Diseases Diarrheal Diseases All Diseases
Control Group Respiratory Diseases Non-Infectious Diseases Large Cities Large Cities

1(Diarrhea)*1(Post) -0.082 -0.182 1(Small)*1(Post) -0.010 -0.072
(0.026) (0.030) (0.158) (0.085)

1(Diarrhea)*1(Post)*Year -0.119 -0.121 1(Small)*1(Post)*Year -0.122 -0.036
(0.010) (0.014) (0.059) (0.038)

N 31,082 31,082 N 15,717 15,717

% Decline by 1995 Due to PAL -59% -67% -50% -21.6%
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Table A3 – Statistical Inference After Clustering at Higher Geographic Levels 
 

 
 

Notes: Estimates of Equations 3 and 4 of the main text with p-values obtained from clustering at the municipality-
level (as in Table 3 of the main text) and the state-level. For state-level clustering, we additionally implement the 
wild cluster bootstrap-t method of Cameron, Gelbach, and Miller (Review of Economics and Statistics 90(3), 2008). 
Point estimates are the same as those presented in those presented in Table 3 of the main text. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Outcome Diarrheal Diarrheal Diarrheal All
Control Group Respiratory Non-Infectious Large Cities Large Cities

1(Diarrhea)*1(Post) -0.132 -0.182 1(Small)*1(Post) 0.00262 0.0543
P-value, municipality clustering 0.002 0.000 P-value, municipality clustering 0.54 0.046
P-value, state clustering 0.004 0.000 P-value, state clustering 0.53 0.110
P-value, wild cluster bootstrap, state-level 0.002 0.005 P-value, wild cluster bootstrap, state-level 0.67 0.53

1(Diarrhea)*1(Post)*Year -0.0857 -0.122 1(Small)*1(Post)*Year -0.112 -0.131
P-value, municipality clustering 0.000 0.000 P-value, municipality clustering 0.003 0.096
P-value, state clustering 0.004 0.003 P-value, state clustering 0.062 0.21
P-value, wild cluster bootstrap, state-level 0.005 0.000 P-value, wild cluster bootstrap, state-level 0.19 0.53
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Table A4 – Diarrheal Mortality Decline and In-Migration 
 

 
 

Notes: To assess potential non-random migration as a function of exposure to PAL, we use data from the public use 
1995 Mexican Population Census Microdata, a representative 1.5% sample which allows us to identify individuals 
who lived in a different municipality 5 years prior to survey (i.e., pre-PAL, which was in 1991). In prior censuses, 
only interstate migration is identifiable. The identity of the municipality the individual moved from is not known, 
though the current municipality of residence is recorded. Focus on reproductive age adults (i.e., men and women 
ages 18-40), we can construct the in-migration rate for each municipality (in our data we can identify nearly 500 
municipalities). On average, the share of individuals living in a given municipality who migrated from elsewhere 
over the preceding 5-year period was 9.3%.  
 
To assess whether in-migration responded to changes in diarrheal disease environment, we estimated models of the 
following form: 
 

Migrationij = α0 + α1 (ΔDiarrheaj) + X(i)(j) + uijt 

 
Migrationij = α0 + α1 (BaseDiarj) + X(i)(j) + uijt 

 
Here, i represents the municipality and j the state. Migrationij is the proportion of individuals in a given 
county in 1995 who lived in another county 5 years prior; ΔDiarrheaj is the change in under-5 diarrheal 
disease mortality in the post versus pre-periods (defined so that positive values reflect larger declines); BaseDiarj is 
pre-intervention baseline diarrheal mortality rate change; and X(i)(j) represent municipality specific, pre-intervention 
controls and/or state-fixed effects.  
 
The first regression assesses whether in-migration changed as a function of the degree of decline in diarrheal 
mortality. We find that areas with larger declines in diarrheal mortality had higher rates of immigration. While the 
estimates are precise, they are substantively small. The estimates suggest that the average drop in diarrheal mortality 
pre-post PAL was associated with a small 0.08% point increase in the proportion of in-migrants, which is less than 
1/100th of the mean. These small estimates are robust to the inclusion of controls. The second regression leverages 
the insight that areas with higher pre-intervention diarrheal mortality rates gained more from PAL (see our original 
working paper, Bhalotra et al (2018) for further details). Here, too, we find small and, this time, imprecisely 
estimated coefficients. For example, at the mean of baseline diarrheal mortality rate, we would expect only a 0.16% 
pt increase in in-migration. We conclude that nonrandom migration is unlikely to be driving our findings. 

(1) (2) (3)
ΔDiarrhea 0.00014 0.000192 0.0002

(0.000048) (0.000046) (0.000074)

N 498 498 498
R-squared 0.002 0.133 0.238

BaseDiar 0.00016 0.00021 0.00055
(0.00068) (0.00059) (0.00075)

N 498 498 498
R-squared 0.0001 0.106 0.201

Controls
Municipality Char No Yes Yes
State FE No No Yes
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Table A5 – Parametric Estimates of Heterogeneous Effects of PAL by Pre-Program 

Infrastructure 
 

 
 

Notes: Estimates from a variant of Equation 3 in the main text, where each parametric term is interacted 
with pre-PAL municipality infrastructure characteristics obtained from a 10% sample of the 1990 census. 
These estimates complement the non-parametric models examining treatment effect heterogeneity 
presented in Table 6 of the main text. Models include both sets of control diseases to improve power 
(allowing pre-existing trends, PAL program impacts, and heterogeneity in infrastructure characteristics to 
vary separately for each control disease). Models also include full sets of interactions with pre-PAL 
municipality average (logged) household income, years of schooling completed, and share of population 
indigenous, also obtained from the 1990 census. We include the additional control variables in order to 
better identify the true interaction effect between baseline amenities and disinfection. This is because, in a 
cross-section, areas with better baseline amenities on average are better off, having better socioeconomic 
outcomes and exhibiting lower rates of diarrheal disease mortality. Failing to account for socioeconomic 
characteristics may lead to falsely attenuated estimates of complementarities between infrastructure and 
disinfection, because the infrastructure may reflect baseline risk: that is, we would expect areas with lower 
baseline risk – which on average have better piped water and sewage infrastructure – to benefit less from a 
clean water intervention. 
We only report the specific coefficients that capture main program effects (1(Diarrhea)× 1(Post) for the 
level break and 1(Diarrhea)× 1(Post)×Year for the trend break) and coefficients estimating the 
interactions between main program effects and pre-existing piped water and sewage coverage, respectively. 
Standard errors, clustered at the municipality level, are provided in parentheses.  
Of note, the number of municipalities represented in our sample (n = 1,280) is smaller than the number of 
municipalities in our main analyses (n = 1,429), owing to the missing information on infrastructure 
characteristics for smaller municipalities who may not have been represented in a 10% random sample of 
the 1990 census. 

Model estimates

1(Diarrhea)*1(Post) 0.026
(0.106)

1(Diarrhea)*1(Post)*Year -0.0937
(0.0377)

Piped Water Covg*1(Diarrhea)*1(Post) -0.0704
(0.221)

Piped Water Covg*1(Diarrhea)*1(Post)*Year -0.0519
(0.0786)

Sewage Covg*1(Diarrhea)*1(Post) -0.581
(0.272)

Sewage Covg*1(Diarrhea)*1(Post)*Year -0.0398
(0.0954)

Municipality-Disease-Year Obs (Municipalities) 42,234 (1,280)
R-squared 0.41
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