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A Summary Statistics

Tables A1 and A2 list summary statistics for several patenting-related variables, as well as

for all county-level variables included in the balance checks in Figure 2. For each variable,

Table A1 lists summary statistics in 1880, which is the last decennial census year before the

mean and median college in the sample is established and so gives a snapshot of the country

around the time most of the site selection experiments take place. Table A2 lists summary

statistics over the entire sample period. Both views are informative given the dramatic

secular increase in patenting, population, and urbanization that took place between 1836

and 2010. Some of the variables, namely the area of a county within 15 miles of a railroad

and the fraction attending school, are not available in the 1880 census and are only available

from a few years.

Table A1: Summary Statistics, 1880

1880
Mean S.D. Min. Median Max.

Number of Patents 2.317 31.678 0.000 0.000 1,336.000
Any Patents 0.283 0.450 0.000 0.000 1.000
Population 20,054.201 47,086.173 0.000 12,687.000 1,296,873.000
Patents per Capita 0.427 3.544 0.000 0.000 275.229
Fraction Urban 0.083 0.175 0.000 0.000 1.000
Fraction Interstate Migrant 0.485 0.286 0.004 0.512 1.000
Manufacturing Output 2,306,597.212 16,719,234.443 0.000 173,526.000 482,030,784.000
Agricultural Output 930,333.955 991,924.950 0.000 612,952.000 9,320,202.000

Notes: Mean, standard deviation, minimum, median, and maximum values for several patent-related and
other county-level economic and demographic variables. All data is from 1880.
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Table A2: Summary Statistics, All Years

All Years
Mean S.D. Min. Median Max.

Number of Patents 10.291 97.562 0.000 0.000 10,506.000
Any Patents 0.406 0.491 0.000 0.000 1.000
Population 50,621.945 224,521.828 0.000 16,532.000 9,758,256.000
Patents per Capita 0.740 7.352 0.000 0.000 2,903.226
Fraction Urban 0.150 0.271 0.000 0.000 13.564
Fraction Interstate Migrant 0.414 0.283 0.002 0.364 1.000
Manufacturing Output 11,000,600.698 81,922,990.756 0.000 408,441.000 2838989568.000
Agricultural Output 2,460,670.855 5,313,644.425 0.000 1,077,056.000 156,962,336.000
Area within 15 miles of RR 521.304 327.432 0.059 474.379 2,623.655
Fraction Attending School 0.184 0.082 0.000 0.208 0.548

Notes: Mean, standard deviation, minimum, median, and maximum values for several patent-related and
other county-level economic and demographic variables. Data covers the entire sample period from 1836 to
2010.

B More Information on the College Site Selection Ex-

periments

Table A3 lists each high quality college site selection experiment, the county and state of the

college, the runner-up counties that were considered as sites for the college, the experiment

year, and the type of college established.1 The dates listed on this table are the date at

which uncertainty over the college site location was resolved; these need not coincide with

the official date of establishment for each college. In some cases, colleges have changed

location, so the county listed need not be the current location or original location of the

college. For colleges that changed location or were under consideration to change location,

multiple experiments may be listed for the same college. For details on each site selection

experiment, see Andrews (2021a).

Table A4 list the number of patents associated with each college site selection experiment.

1Table A3 is also included as an appendix to the main paper.
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In the first column, the table lists the total number of patents granted in the college county

and all runner-up counties over all years. Column 2 lists the total number of patents granted

in the college county over all years. Column 3 lists the total number of patents granted in all

runner-up counties over all years. Columns 4 and 5 list the total number of patents granted

in the college and in all runner-up counties, respectively, in the years before the college is

established. In spite of concerns about the sparseness of patent data for some counties, in

all cases the college and runner-up counties have multiple patents throughout the sample

period. In 38 of the 63 experiments, both the college and runner-up counties have at least

one patent in the years before the college is established. Several of the cases in which either

a college or the runner-up counties do not have a patent before the college is established

were cases in which the college was established in the 1840s or 1850s and hence there were

relatively few years of patent data in the pre-sample period.

B.A Comparing Sample to Non-Sample Colleges

To compare the sample colleges to the non-sample colleges, I utilize the Commissioner of

Education reports from various years as described in Section I.E. For each year, these reports

list the number of faculty, number of students, number of graduate students, and number

of library volumes, among other variables such as tuition, for each U.S. college. It should

be noted that there is no guarantee of the reliability of the Office of Education reports

in each year. Indeed, for several years sample colleges are missing from the reports while

the narrative histories indicate that sample colleges were in operation. This also calls into

question the accuracy of the reported information in the reports. Nevertheless, these reports
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Table A3: List of College Site Selection Experiments

College County State Runner-Up Counties Experiment Year College Type

1 University of Missouri Boone Missouri Howard; Cooper; Saline; Cole; 1839 Other Public
Callaway

2 University of Mississippi Lafayette Mississippi Harrison; Rankin; Montgomery; 1841 Other Public
Attala; Winston; Monroe

3 Eastern Michigan University Washtenaw Michigan Jackson 1849 Normal School
4 Pennsylvania State University Centre Pennsylvania Blair 1855 Land Grant
5 The College of New Jersey Mercer New Jersey Middlesex; Burlington; Essex 1855 Normal School
6 University of California Berkeley Alameda California Napa; Contra Costa 1857 Land Grant
7 Iowa State University Story Iowa Polk; Marshall; Jefferson; 1859 Land Grant

Tama; Hardin
8 University of South Dakota Clay South Dakota Yankton; Bon Homme 1862 Other Public
9 University of Kansas Douglas Kansas Shawnee 1863 Other Public
10 Lincoln College (IL) Logan Illinois Macon; Edgar; Warrick 1864 Other Private
11 Cornell University Tompkins New York Seneca; Onondaga; Schuyler 1865 Land Grant
12 University of Maine Penobscot Maine Sagadahoc 1866 Land Grant
13 University of Wisconsin Dane Wisconsin Fond du Lac 1866 Land Grant
14 University of Illinois Champaign Illinois Morgan; McLean 1867 Land Grant
15 West Virginia University Monongalia West Virginia Greenbrier; Kanawha 1867 Land Grant
16 Oregon State University Benton Oregon Marion 1868 Land Grant
17 Purdue University Tippecanoe Indiana Marion; Hancock 1869 Land Grant
18 Southern Illinois University Jackson Illinois Clinton; Jefferson; Washington; 1869 Normal School

Perry; Marion
19 University of Tennessee Knox Tennessee Rutherford 1869 Land Grant
20 Louisiana State University East Baton Rouge Louisiana Bienville; East Feliciana 1870 Land Grant
21 Missouri University of Science and Technology Phelps Missouri Iron 1870 Technical School
22 Texas A and M University Brazos Texas Austin; Grimes 1871 Land Grant
23 University of Arkansas Washington Arkansas Independence 1871 Land Grant
24 Auburn University Lee Alabama Tuscaloosa; Lauderdale 1872 Land Grant
25 University of Oregon Lane Oregon Polk; Linn; Washington 1872 Other Public
26 Virginia Polytechnic Institute Montgomery Virginia Albemarle; Rockbridge 1872 Land Grant
27 University of Colorado Boulder Colorado Fremont 1874 Other Public
28 University of Texas Austin Travis Texas Smith 1881 Other Public
29 University of Texas Medical Branch Galveston Texas Harris 1881 Technical School
30 North Dakota State University Cass North Dakota Stutsman 1883 Land Grant
31 University of North Dakota Grand Forks North Dakota Burleigh 1883 Other Public
32 University of Arizona Pima Arizona Pinal 1885 Land Grant
33 University of Nevada Washoe Nevada Carson City 1885 Land Grant
34 Georgia Institute of Technology Fulton Georgia Greene; Clarke; Baldwin; Bibb 1886 Technical School
35 Kentucky State University Franklin Kentucky Daviess; Boyle; Christian; 1886 HBCU

Fayette; Warren
36 North Carolina State University Wake North Carolina Mecklenburg; Lenoir 1886 Land Grant
37 University of Wyoming Albany Wyoming Uinta; Laramie 1886 Land Grant
38 Utah State University Cache Utah Weber 1888 Land Grant
39 Clemson University Pickens South Carolina Richland 1889 Land Grant
40 New Mexico State University Dona Ana New Mexico San Miguel 1889 Land Grant
41 University of Idaho Latah Idaho Bonneville 1889 Land Grant
42 Alabama Agricultural and Mechanical University Madison Alabama Montgomery 1891 HBCU
43 University of New Hampshire Strafford New Hampshire Belknap 1891 Land Grant
44 Washington State University Whitman Washington Yakima 1891 Land Grant
45 North Carolina A and T University Guilford North Carolina Alamance; New Hanover; Durham; 1892 HBCU

Forsyth
46 Northern Illinois University DeKalb Illinois Winnebago 1895 Normal School
47 Western Illinois University McDonough Illinois Schuyler; Warren; Hancock; 1899 Normal School

Mercer; Adams
48 University of Nebraska at Kearney Buffalo Nebraska Valley; Custer 1903 Normal School
49 Western Michigan University Kalamazoo Michigan Allegan; Barry 1903 Normal School
50 University of Florida Alachua Florida Columbia 1905 Land Grant
51 Georgia Southern College Bulloch Georgia Tattnall; Emanuel 1906 Other Public
52 University of California Davis Yolo California Solano 1906 Land Grant
53 East Carolina University Pitt North Carolina Edgecombe; Beaufort 1907 Technical School
54 Western State Colorado University Gunnison Colorado Mesa; Garfield 1909 Normal School
55 Arkansas Tech University Pope Arkansas Sebastian; Franklin; Conway 1910 Technical School
56 Bowling Green State University Wood Ohio Henry; Sandusky; Van Wert 1910 Normal School
57 Kent State University Portage Ohio Medina; Trumbull 1910 Normal School
58 Southern Arkansas University Columbia Arkansas Ouachita; Polk; Hempstead 1910 Other Public
59 Southern Mississippi University Forrest Mississippi Hinds; Jones 1910 Normal School
60 Southern Methodist University Dallas Texas Tarrant 1911 Other Private
61 Texas Tech Lubbock Texas Nolan; Scurry 1923 Technical School
62 US Merchant Marine Academy Nassau New York Bristol 1941 Military Academy
63 US Air Force Academy El Paso Colorado Madison; Walworth 1954 Military Academy

Notes: All high quality college site selection experiments in chronological order by the experiment date. Also
included is the county and state of each college, the runner-up counties considered, the experiment year, and
the college type of each experiment.
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Table A4: Patenting in the College Site Selection Experiments

College Num. Pat. Num. Pat. Coll. Num. Pat. RunUp Num. Pat. Coll. Pre Num. Pat. RunUp Pre

1 University of Missouri 1618 960 659 0 0
2 University of Mississippi 1066 150 916 0 0
3 Eastern Michigan University 14202 11290 2912 3 1
4 Pennsylvania State University 3506 2120 1386 2 4
5 The College of New Jersey 67208 16877 50331 5 144
6 University of California Berkeley 62095 42813 19282 0 0
7 Iowa State University 7739 2180 5559 0 1
8 University of South Dakota 156 53 103 0 0
9 University of Kansas 2293 1045 1247 1 0
10 Lincoln College (IL) 3670 358 3312 9 17
11 Cornell University 16533 3194 13339 90 265
12 University of Maine 977 772 205 91 16
13 University of Wisconsin 10436 8803 1633 36 69
14 University of Illinois 4003 2522 1482 9 78
15 West Virginia University 2664 495 2169 11 0
16 Oregon State University 4762 3363 1400 0 2
17 Purdue University 21693 2597 19096 14 232
18 Southern Illinois University 1219 360 860 0 19
19 University of Tennessee 4659 4182 477 14 0
20 Louisiana State University 6792 6677 115 14 0
21 Missouri University of Science and Technology 538 419 119 0 2
22 Texas A and M University 1263 1068 195 0 0
23 University of Arkansas 720 654 67 0 2
24 Auburn University 1623 600 1023 0 6
25 University of Oregon 14039 2703 11336 0 4
26 Virginia Polytechnic Institute 1547 1145 402 0 11
27 University of Colorado 13319 13047 272 0 0
28 University of Texas Austin 27294 26512 782 37 12
29 University of Texas Medical Branch 48725 2582 46143 50 24
30 North Dakota State University 1194 998 196 0 0
31 University of North Dakota 643 275 368 0 0
32 University of Arizona 8725 8181 544 4 6
33 University of Nevada 4314 3767 547 7 3
34 Georgia Institute of Technology 13699 11838 1861 80 99
35 Kentucky State University 5237 115 5122 11 124
36 North Carolina State University 20644 14422 6222 26 30
37 University of Wyoming 797 267 530 6 8
38 Utah State University 2781 1279 1502 1 3
39 Clemson University 2535 915 1620 0 25
40 New Mexico State University 475 407 69 0 6
41 University of Idaho 1473 425 1048 0 0
42 Alabama Agricultural and Mechanical University 5075 4457 619 17 34
43 University of New Hampshire 1855 1273 582 56 85
44 Washington State University 1727 695 1032 3 2
45 North Carolina A and T University 13054 4801 8253 26 66
46 Northern Illinois University 9970 1434 8536 249 508
47 Western Illinois University 3210 402 2808 141 696
48 University of Nebraska at Kearney 378 248 130 26 22
49 Western Michigan University 9571 7869 1702 397 149
50 University of Florida 2892 2698 194 18 10
51 Georgia Southern College 140 89 51 0 14
52 University of California Davis 3716 2073 1643 42 55
53 East Carolina University 722 460 262 8 19
54 Western State Colorado University 1245 132 1113 21 49
55 Arkansas Tech University 695 133 563 9 64
56 Bowling Green State University 3181 1814 1367 75 417
57 Kent State University 7290 2645 4646 175 291
58 Southern Arkansas University 383 142 241 22 35
59 Southern Mississippi University 1020 300 720 0 55
60 Southern Methodist University 39872 29916 9956 198 182
61 Texas Tech 1355 1232 123 3 7
62 US Merchant Marine Academy 29831 24291 5540 659 2374
63 US Air Force Academy 10394 5449 4945 356 926

Notes: Patenting counts for each high quality college site selection experiments over all years, for each college
county over all years, for each set of runner-up counties over all years, for each college county in the years
before the college is established, and for each set of runner-up counties in the years before the college is
established. Experiments are listed in chronological order by the experiment date.
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represent the best data available on the universe of U.S. colleges prior to the 1970s. See the

Data Appendix of Goldin and Katz (1999) for a more detailed description of these data.

In Tables A5-A8, I show summary statistics for the high quality colleges, the low quality

colleges, and the non-experimental colleges for the select years: 1870, 1890, 1900, and 1910;

results for other years are available upon request. A non-experimental college is a college that

is in neither a high quality nor low quality experiment in my sample.2 I also show summary

statistics for the subset of non-experimental colleges with a Carnegie Classification of R1

or R2, that is, to all institutions rated as having “very high” or “high” research activity,

respectively. Data on the Carnegie Classification for each college is obtained from the IPEDS

data. In each table, I show the mean, standard deviation, minimum, median, and maximum

values for the number of students and number of faculty, and, when available, the number of

graduate students, number of library volumes, and tuition. For most years, the high quality

colleges are similar to the low quality colleges; in some years they have more students and

faculty, and in some years they have fewer. For most years, both are larger on average

than the non-experimental colleges and smaller than the subset of non-experimental colleges

that currently have a Carnegie R1 or R2 classification. The changes over years reflects both

changes in the composition of the sample as new colleges are established as well as the

evolution of existing colleges.

To more fully show the entire distribution of colleges, in each panel of Figure A1, I plot

the distribution of college characteristics of interests for the non-experimental colleges with

green bars. All variables are residualized after controlling for year effects. For each variable,

2Recall that the low quality experiments are the cases in which I can identify runner-up sites but the
assignment among the runners-up is not as good as random.
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for readability I plot the distribution over ten equal-sized bins. I then plot the ratio of the

share of colleges in high quality experiments to the share of non-experimental colleges in

each bin (solid line) and the share of colleges in low quality experiments to the share of non-

experimental colleges (dashed line). A ratio value of one (indicated by the dark dotted line)

occurs when the share of sample colleges to non-experimental colleges are equal in a given

bin. Panel (a) plots the logged number of students. Both high and low quality experiment

colleges have a much greater share of colleges in the larger bins, with the colleges in high

quality experiments even larger than those in low quality experiments, although both ratios

are close to one for the very largest student populations. Panel (b) plots the logged number

of faculty and obtains the same general pattern, although the high quality experiments are

over-represented in the 10th decile of faculty while the low quality experiments are under-

represented. Panel (c) plots the logged number of graduate students. Colleges in both high

and low quality experiments are also more likely than the non-experimental colleges to have a

large number of graduate students, which suggests the sample colleges may be more research

active. Panel (d) plots the logged number of library volumes, which proxies the colleges’ role

as a repository of knowledge that may be useful for driving innovation. Again, the colleges in

both high and low quality experiments are over-represented in the larger bins, with colleges

in low quality experiments having an even greater share of colleges in the largest two bins.

While not shown, I also compare the distributions of average tuition, which is calculated by

dividing each college’s total tuition receipts by the number of students. In this case, the

high quality experiment colleges in particular were more likely to have lower tuition than the

non-experimental colleges. Kolmogorov-Smirnov tests decisively reject the null hypothesis

that the distributions of high quality experiment and low quality experiment colleges are the
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same as the distribution of non-experimental colleges for the number (and logged number)

of students, faculty, graduate students, and library volumes; these results are available upon

request.

In Figure A2, I conduct the same exercise but instead of comparing the sample colleges to

all non-experimental colleges, I compare them to all colleges with a Carnegie Classification of

R1 or R2, that is, to all institutions rated as having “high” or “very high” research activity.

Across all panels, the distribution of the sample colleges is fairly similar to the distribution of

Carnegie colleges and Kolmogorov-Smirnov tests fail to reject the null that the distributions

are identical.

Together, these results suggest that the colleges in the sample are larger colleges than the

average institution of higher education in the U.S. They are also likely to be more prominent

than the average college and to be more research-focused. Indeed, on all dimensions examined

the sample college appear very similar to, although perhaps a bit smaller than, the typical

U.S. “research university” according to the Carnegie classifications. To the extent that

college size, library resources, research-oriented students and faculty are important factors

in determining a college’s impact on the local economy, the estimates in this paper are

therefore representative for large research universities but likely to overstate the effects of a

college relative to the “typical” college established in the U.S.

B.B Additional Balance Checks

In Figure 2 in Section I.F, I compare college counties to runner-up counties along a number of

observable dimensions and find that no individual dimension predicts treatment status. Here,
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Table A5: Summary Statistics for Different Types of Colleges: 1870

N Mean S.D. Min Median Max

Num. Students
High Quality Colleges 14 188.29 153.81 0 166 585
Low Quality Colleges 30 245.37 196.31 0 164 767
Non-Experiment Colleges 291 151.18 145.31 0 124 1,074
Non-Experiment Carnegie Colleges 4 192.50 152.20 76 140 414

Num. Faculty
High Quality Colleges 14 13.57 9.10 0 13 38
Low Quality Colleges 30 15.07 13.23 0 10 68
Non-Experiment Colleges 291 8.72 8.03 0 7 75
Non-Experiment Carnegie Colleges 4 17.25 8.46 10 17 26

Library Volumes
High Quality Colleges 14 10,285.71 13,487.48 0 5,000 38,000
Low Quality Colleges 29 11,162.66 11,568.75 0 6,000 37,967
Non-Experiment Colleges 290 3,376.16 5,114.32 0 1,253 34,000
Non-Experiment Carnegie Colleges 4 5,286.25 3,601.77 0 6,750 7,645

Tuition
High Quality Colleges 14 42.86 31.89 0 48 90
Low Quality Colleges 30 37.14 33.23 0 30 150
Non-Experiment Colleges 291 59.74 154.98 0 34 2,540
Non-Experiment Carnegie Colleges 4 29.75 23.81 4 28 60

Notes: Summary statistics for the high quality colleges, low quality colleges, non-experimental colleges, and
non-experiments colleges that are classified as Carnegie R1 or R2 institutions, with each type of college on
a different row. Columns show the mean, standard deviation, minimum, median, and maximum for each
college type and college characteristic. The first set of four rows shows results for the number of students,
the second set for the number of faculty, the third set for the number of graduate students, the fourth set for
the number of library volumes, and the fifth set for tuition. Data are from the Commissioner of Education
report in 1870.
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Figure A1: Compare Colleges In Sample to All Out of the Sample Colleges
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Notes: The bars show the distribution of non-experimental colleges across ten equal-sized bins. The solid
line plots the ratio of the share of high quality colleges to the share of non-experimental colleges in each
bin. The dashed line plots the ratio of the share of low quality colleges to the share of non-experimental
colleges in each bin. The dark dotted line plots a ratio of one as a reference. Panel (a) plots these results for
log(Students), Panel (b) for log(Faculty), Panel (c) for log(Graduate Students), and Panel (d) for log(Library
Volumes). All variables are residualized by controlling for year effects.
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Figure A2: Compare Colleges In Sample to Out of the Sample Carnegie Research Institutions
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Notes: The bars show the distribution of Carnegie R1 and R2 non-experimental colleges across ten equal-
sized bins. The solid line plots the ratio of the share of high quality colleges to the share of non-experimental
colleges in each bin. The dashed line plots the ratio of the share of low quality colleges to the share of
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Table A6: Summary Statistics for Different Types of Colleges: 1890

N Mean S.D. Min Median Max

Num. Students
High Quality Colleges 21 372.76 315.72 0 281 1,391
Low Quality Colleges 35 406.37 358.85 0 297 1,645
Non-Experiment Colleges 265 264.02 274.68 0 188 2,271
Non-Experiment Carnegie Colleges 10 789.50 694.68 70 548 2,271

Num. Faculty
High Quality Colleges 21 31.95 26.68 10 21 110
Low Quality Colleges 35 36.31 36.86 4 22 147
Non-Experiment Colleges 265 18.18 25.08 3 13 243
Non-Experiment Carnegie Colleges 10 84.60 71.08 15 66 243

Notes: Summary statistics for the high quality colleges, low quality colleges, non-experimental colleges, and
non-experiments colleges that are classified as Carnegie R1 or R2 institutions, with each type of college on
a different row. Columns show the mean, standard deviation, minimum, median, and maximum for each
college type and college characteristic. The first set of four rows shows results for the number of students,
the second set for the number of faculty, the third set for the number of graduate students, the fourth set for
the number of library volumes, and the fifth set for tuition. Data are from the Commissioner of Education
report in 1890.

I verify that these dimensions do not jointly predict treatment status either. Unfortunately,

for several of the dimensions considered, missing data is a major concern. This is because

the data come from different censuses and particular data were not necessarily collected

every decade. Comparing only experiments in which data for all dimensions are available

for all college and runner-up counties results in a small sample size. I instead present results

of joint tests with data that are available for most counties in the census year prior to the

establishment of the new college.

Results of the joint tests are presented in Table A9. Column 1 estimates a linear prob-

ability model in which the dependent variable is a dummy variable taking the value of 1

when the county obtains the college and 0 otherwise. The regressors are those most likely

to be correlated with both invention and the presence of a college: logged patenting, logged
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Table A7: Summary Statistics for Different Types of Colleges: 1900

N Mean S.D. Min Median Max

Num. Students
High Quality Colleges 27 803.48 862.22 84 387 3,337
Low Quality Colleges 42 769.48 850.93 92 468 3,413
Non-Experiment Colleges 298 351.77 538.01 21 214 5,225
Non-Experiment Carnegie Colleges 14 1,360.93 1,284.98 33 820 4,288

Num. Faculty
High Quality Colleges 27 67.11 74.15 12 43 327
Low Quality Colleges 42 67.21 83.62 8 34 359
Non-Experiment Colleges 298 26.00 41.89 3 15 483
Non-Experiment Carnegie Colleges 14 138.07 128.17 11 108 483

Num. Grad. Students
High Quality Colleges 27 36.19 54.02 0 10 205
Low Quality Colleges 42 40.71 85.93 0 6 433
Non-Experiment Colleges 298 10.27 64.78 0 0 1,003
Non-Experiment Carnegie Colleges 14 148.07 266.37 0 31 1,003

Library Volumes
High Quality Colleges 21 17,125.52 10,640.58 4,210 17,526 36,000
Low Quality Colleges 31 17,479.45 11,417.34 1,000 16,000 39,000
Non-Experiment Colleges 279 8,590.63 9,096.98 0 5,200 40,000
Non-Experiment Carnegie Colleges 6 20,967.00 11,684.68 4,000 20,300 37,202

Tuition
High Quality Colleges 27 23.60 33.36 0 11 121
Low Quality Colleges 40 46.10 41.79 0 36 192
Non-Experiment Colleges 257 37.55 42.03 0 25 306
Non-Experiment Carnegie Colleges 14 69.43 49.19 0 70 149

Notes: Summary statistics for the high quality colleges, low quality colleges, non-experimental colleges, and
non-experiments colleges that are classified as Carnegie R1 or R2 institutions, with each type of college on
a different row. Columns show the mean, standard deviation, minimum, median, and maximum for each
college type and college characteristic. The first set of four rows shows results for the number of students,
the second set for the number of faculty, the third set for the number of graduate students, the fourth set for
the number of library volumes, and the fifth set for tuition. Data are from the Commissioner of Education
report in 1900.
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Table A8: Summary Statistics for Different Types of Colleges: 1910

N Mean S.D. Min Median Max

Num. Students
High Quality Colleges 37 994.68 1,093.89 60 544 4,896
Low Quality Colleges 52 1,100.83 1,325.95 124 592 5,422
Non-Experiment Colleges 380 417.45 631.61 21 252 7,028
Non-Experiment Carnegie Colleges 18 1,883.44 1,876.67 116 1,007 7,028

Num. Faculty
High Quality Colleges 37 112.57 138.95 8 61 652
Low Quality Colleges 52 100.65 120.79 8 55 486
Non-Experiment Colleges 380 37.41 61.99 3 20 618
Non-Experiment Carnegie Colleges 18 192.72 170.08 6 166 618

Num. Grad. Students
High Quality Colleges 37 39.65 80.31 0 9 372
Low Quality Colleges 52 66.46 201.87 0 5 1,367
Non-Experiment Colleges 380 14.23 96.12 0 0 1,638
Non-Experiment Carnegie Colleges 18 209.50 397.85 0 62 1,638

Library Volumes
High Quality Colleges 23 19,387.83 9,405.94 200 19,470 35,000
Low Quality Colleges 26 16,820.69 8,628.30 4,000 15,153 34,448
Non-Experiment Colleges 337 10,314.07 9,592.00 200 7,000 40,000
Non-Experiment Carnegie Colleges 7 17,146.86 12,184.68 7,000 10,000 36,000

Tuition
High Quality Colleges 35 29.60 21.02 7 24 106
Low Quality Colleges 50 59.91 43.55 6 52 171
Non-Experiment Colleges 342 65.22 57.76 4 50 588
Non-Experiment Carnegie Colleges 18 94.18 54.37 13 85 184

Notes: Summary statistics for the high quality colleges, low quality colleges, non-experimental colleges, and
non-experiments colleges that are classified as Carnegie R1 or R2 institutions, with each type of college on
a different row. Columns show the mean, standard deviation, minimum, median, and maximum for each
college type and college characteristic. The first set of four rows shows results for the number of students,
the second set for the number of faculty, the third set for the number of graduate students, the fourth set for
the number of library volumes, and the fifth set for tuition. Data are from the Commissioner of Education
report in 1910.
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population, and the fraction urbanized.3 The F -test statistic for the joint significance of

these included regressors is 0.847, which is statistically insignificant. Column 2 estimates

a logit model with the same regressors. A likelihood ratio χ2-test also concludes that the

regressors do not jointly predict treatment status. Columns 3 and 4 repeat Columns 1 and 2

but include all of the regressors found in Figure 2, some of which are missing for some coun-

ties and some census years, and hence these tests have fewer observations; the coefficients are

again not jointly significant.4 Results are similar with other combinations of regressors be-

yond those in Figure 2. Namely, I conduct joint and individual balance checks on residential

segregation (see Logan and Parman (2017) for the construction of this measure), population

density, manufacturing output, manufacturing establishments, manufacturing employment,

manufacturing wages, farm output, farm wages, value of farms, the share of patents across

patent classes, fraction of the population attending school, and fraction illiterate. I also com-

pare logged transformations of many of these variables. In no cases are the means of these

variables in college and runner-up counties statistically different from one another at the 5%

level of significance. In contrast, the college and non-experimental counties are frequently

statistically different from one another, with college counties appearing on average to be

larger, more industrialized, more inventive, and more educated. These results are available

upon request.

Figure A3 shows that not only are the levels of a number of economic and demographic

variables similar in college and runner-up counties prior to establishing a new college, but

they evolve similarly as well. In Panel (a), I plot logged county population for several decades

3Even here, population and urbanization data is missing for four experiments.
4Even in Columns 3 and 4, I omit data on access to railroads and on the fraction of children attending

school because it is only reported in a few counties in the last census before the college is established.
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both before and after the establishment of a the new college in the college, runner-up, and

non-experimental counties. Panel (b) plots the fraction of the county population that lives

in an urban area. Panel (c) plots the logged farm output. Finally, Panel (d) plots logged

manufacturing output. Plots for the other variables are similar. Confidence intervals are

omitted in the figure for readability; in all cases the college and runner-up counties are

statistically indistinguishable from one another before the college is established.

Table A9: Tests for Joint Significance of Covariates Predicting Whether a County Receives a College

Linear Probability Logit Linear Probability Logit

log(Patents + 1) -0.011 -0.060 0.013 0.032
(0.052) (0.234) (0.090) (0.396)

log(Population) 0.036 0.195 0.084 0.394
(0.039) (0.204) (0.128) (0.565)

Fraction Living in Urban Areas 0.107 0.448 -0.265 -1.443
(0.187) (0.824) (0.326) (1.508)

log(Mean Age) -0.541 -3.446
(1.645) (7.512)

Fraction Interstate Migrants 0.302 1.542
(0.240) (1.123)

log(Value Manuf. Output) 0.067* 0.410
(0.035) (0.231)

log(Value Farm Product) -0.083 -0.341
(0.075) (0.337)

# Counties 172 172 82 82
# Experiments 59 59 58 58

Adj. R-Sqr. -0.007 -0.014
F-Stat 0.619 0.839

F-Test p-Value 0.604 0.558
LR Chi-Sqr. Stat 1.981 6.745
LR-Test p-Value 0.576 0.456

Notes: Data are from the last census year before each college site selection experiment. The included
covariates are those that are available for most counties in nearly every census. Columns 1 and 3 present
results from linear probability models. Columns 2 and 4 present results from logit models as odds ratios.
Stars indicate statistical significance: * p < 0.10; ** p < 0.05; *** p < 0.01
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Figure A3: Time Series for Demographic and Economic Variables
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Notes: Time series for various demographic and economic variables in each census year. The year of the
college experiment is normalized to year 0. Everything left of year 0 shows pre-college means; everything to
the right shows post-college means. The college counties are represented by the solid line. The runner-up
counties are represented by the dashed line. The non-experimental counties are represented by the short-
dashed line. In each panel, the y-axis is a demographic or economic variable. Data are for high quality
experiments only.

20



C Constructing Patent Data

The data on patents covers the years 1836 to 2010. Patent data from before 1836 is not

useful for analysis, as 1836 marked a major change in the U.S. patent system, essentially

changing from a registration system to an examination system. In addition, a major fire at

the U.S. Patent Office in 1836 destroyed most of the patents from the early United States, so

patent records are only complete from late 1836 onward (Andrews, 2021b). The patent data

come from four sources, with different sources available for different years. For the years

1836-1870, I use patent data collected in the Subject-Matter Index of Patents for Inventions

Issued by the United States Patent Office from 1790 to 1873 (Leggett, 1874), compiled by

Dr. Jim Shaw of Hutchinson, KS.5 I use the Annual Reports of the Commissioner of Patents

for the years 1870 to 1942. See Sarada, Andrews and Ziebarth (2019) for details on cleaning,

parsing, and preparing this dataset. The years 1942 to 1975 come from the HistPat dataset

compiled by Petralia, Balland and Rigby (2016a); see Petralia, Balland and Rigby (2016b) for

details on the construction of this data.6 Finally, for the years 1975 to 2010, contemporary

digitized patent data sources can be used. I utilize the data available from the USPTO’s

PatentsView.7 Because all analysis include year effects, there is no concern with the fact that

different years make use of different patent data sources. Each of these datasets contains,

for every granted U.S. patent, the names and residence of all inventors.8 The fact that each

patent dataset used in this paper reports the names of individual inventors is important for

matching patentees to other datasets, namely college yearbook data or the U.S. population

5See Miller (2016a) and Miller (2016b) for more information on how this dataset is compiled.
6I also use the HistPat data for 1874. No Annual Report could be located for that year.
7Available at https://www.patentsview.org/download/.
8The Jim Shaw, Annual Reports, and PatentsView data report the town and state of each inventor; the

HistPat data reports the county and state of each inventor.
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censuses. Other patent datasets that are commonly used in the literature, such as the NBER

patent data and its supplements (Hall, Jaffe and Trajtenberg, 2001), only include patents

that are assigned to firms or other institutional entities and do not include the names of

inventors.9

To obtain additional patent-level information, I merge by patent number from the Jim

Shaw, Hist Pat, and PatentsView data to other datasets that include additional patent

information. In particular, I merge to the U.S. Patent and Trademark Office’s Historical

Patent Data Files (Marco et al., 2015), which contain information on patent classes, and the

Comprehensive U.S. Patent (CUSP) Data compiled by Berkes (2018), which contain data

on patent citations and patent claims. The Annual Reports do not generally have patent

numbers in a usable form, so I merge to the other datasets using inventor name and town

and state of residence.

For the results in this paper, I aggregate all patents to the county level. I do this for a

number of reasons. First, the HistPat data records inventors’ counties of residence, rather

than town, and so analyzing results at a less aggregated level is impossible for this data.

Second, because towns can be very small, in many cases individuals may live in one town but

commute to another, even before the widespread adoption of the automobile. Aggregating

to the county level thus increases the probability that a patent will be recorded in the

geographic area in which the inventor actually made the invention. Moreover, individuals

self report their town, with the Patent Office having no uniform way to record residences. As

9The listed name on the patentee is likely to be an accurate record of the individual who created the
invention. Each patent is legally requird to list the name of the “first and true inventor” of a particular
invention rather than, for instance, the owner of the firm in which the inventor is employed. Failure to
accurately list the inventors on a patent can result in loss of patent rights, providing confidence that recorded
inventor names are accurate up to transcription and character recognition errors; see Khan (2005) for more
details.
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an example of why this is an issue, consider the example of individuals living close to Penn

State University. Some may list their town as “Happy Valley,” which can refer to any of

the boroughs or townships in the immediate vicinity of Penn State, while others may report

“State College,” “College Township,” or one of the other adjacent townships. Aggregating to

the county level avoids these issues. As the above example suggests, there is also much more

variation in the names used to record particular towns. Town names are also much more

likely to change over time, and new towns are incorporated and unincorporated, making

it difficult to create a consistent time series of patents coming from the same geographic

area. Finally, many other supplementary datasets, such as the NHGIS, are available at the

county level for all years, but not at the town level. In Section E.D I present results when

using town-level or commuting zone-level data. Results are qualitatively similar, with any

exceptions described in detail below.

Determining the county of each patent is non-trivial because each patent lists the town

and state of each inventor, but not the county.10 To match towns to their counties, I first

standardize all town and county names by converting all characters to have consistent capital-

ization; removing all spaces, punctuation, and non-alphabetic characters; and harmonizing

common abbreviations, for instance changing “SAINT” to “ST” and “FORT” to “FT”. I

further manually clean some known spelling mistakes. I then obtain a list of all towns in

each U.S. county in each decennial census year, compiled from the 100% censuses. I look

for exact matches between town names in the patents and town names in the preceding

decennial census. This means that, for instance, town names in 1883 patents are matched

to town names in the 1880 decennial census. For 1890, the 100% decennial census was

10Except for the HistPat data, as noted above.
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destroyed by fire, so I match town names to the 1900 census for the years in the 1890s.

The results are insensitive to matching to the closest census rather than the previous cen-

sus. For all patents granted in 1950 or later, there is no declassified 100% decennial census

from the previous decade to match to. In these cases, I first attempt to match to town

names in the 1940 decennial census. For the remaining towns that are unmatched, I use zip

code data from https://www.unitedstateszipcodes.org/zip-code-database/ to match

to any town name that is affiliated with a current U.S. zip code; the zip code database also

contains the counties in which each town resides.

Roughly 10% of town names appear in multiple counties in the same state in the same

census. While this may sometimes reflect the fact that towns sit on county borders, often

they occur in counties that are not adjacent to one another. When this occurs, it is impossible

to know with certainty to which county the patent should belong. In these cases, I test three

alternative assumptions to create county-level patent counts. Let Pattsy be the number of

patents in town i that appears in multiple counties in state s and year t. Then for each

county c in state s, I calculate the number of patents from the multiple-county towns as

1. Patcst =
∑

i Patist

2. Patcst = 0

3. P̂ atcst =
∑

i
1

NumCountiesist
Patist, where NumCountiesist is the number of counties in

state s in which town i appears in year t

Patcst is an upper bound on the number of patents in each county c in state s and year t,

while Patcst is a lower bound. I use the “mean” number of patents, P̂ atcst for all results in

this paper, but the results are nearly identical when using the upper or lower bounds instead.
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P̂ atcst is the same measure constructed by the USPTO to calculate patenting by county (US

Patent and Trademark Office (2000), US Patent and Trademark Office (2018)).

Errors may also occur if spelling, transcription, or OCR errors occur in town names or

if the patent data use uncommon abbreviations or other slight variations of actual town

names. In the baseline results presented throughout the paper, I require standardized town

names in the patent data to exactly match standardized town names in the town-county

correspondences. I also match towns to counties using “fuzzy” matching techniques. These

are bi-gram string comparators that return a “distance” between the town-state strings in

each dataset; see Andrews (2021b) for more information on the differences between the exact

and fuzzy matching between towns and counties. Standardizing the town and county names

eliminates most differences, and so the fuzzy matching approaches result in similar patent

counts by county.

I repeat the baseline results using the HistPat or CUSP historical patent data instead

of the Annual Reports, as well as using the alternative methods to match town names to

counties described above. In all cases, the results are similar. These results are available

upon request.
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D Additional Details on Constructing the Yearbook-

Patent-Census Matched Data

D.A Yearbook Data

To determine whether a particular patentee is an alumni or faculty member of a particular

college, I digitize historical college yearbooks to obtain names of individuals affiliated with

each college. Scanned images of a large number of college yearbooks are available on www.

ancestry.com. After obtaining the yearbook images, I transcribe them to obtain relevant

information. Table A10 lists the colleges for which yearbook data has been transcribed,

including the number of yearbooks available for each college, the first and last transcribed

year, and the number of transcribed records for undergraduate alumni, graduate alumni,

and faculty. Due to the fact that students and faculty in the yearbooks are matched to

individuals in the U.S. census and the 1940 census is the most recent that is available, no

yearbooks have been transcribed for years more recent than 1940.

The type of information available and formatting of each yearbook vary enormously

from college to college or even by year within the same college. This makes analysis using

particular types of information difficult, as it may not be available for most years. But

almost all yearbooks include the names of college seniors along with their majors. Many also

include seniors’ hometowns, sports teams or clubs, fraternities or sororities, or professional

organizations, and often this information is available for juniors or underclassmen as well.

Because I am interested in constructing a list of alumni from a particular college, I keep

information only for college seniors. The assumption is that the vast majority of these
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Table A10: Yearbook Data Summary Statistics

College Num. Yearbooks First Yearbook Last Yearbook Num. Undergrads Num. Grad. Studs. Num. Faculty

1 Auburn University 8 1916 1940 2573 7 202
2 Clemson University 5 1915 1940 1187 0 83
3 Cornell University 45 1879 1936 26558 3313 15473
4 Georgia Institute of Technology 17 1917 1940 4309 0 1468
5 Iowa State University 31 1896 1940 8594 0 538
6 Louisiana State University 7 1927 1940 3528 713 83
7 Missouri University of Science and Technology 12 1911 1940 747 0 505
8 North Carolina A and T University 1 1939 1939 97 0 42
9 North Dakota State University 17 1908 1940 2956 0 310
10 Texas Tech 2 1937 1940 710 8 133
11 University of Arizona 9 1913 1940 1583 36 438
12 University of Colorado 27 1893 1939 5743 1 1640
13 University of Maine 32 1900 1940 4851 885 4530
14 University of Missouri 33 1898 1940 9792 574 1547
15 University of Nevada 7 1901 1940 512 0 201
16 University of New Hampshire 13 1909 1940 2673 0 2022
17 University of North Dakota 5 1906 1940 920 0 68
18 Utah State University 5 1911 1939 903 0 27
19 Virginia Polytechnic Institute 18 1898 1939 2313 50 914
20 Washington State University 12 1903 1940 4136 0 317

Notes: List of colleges for which yearbooks are transcribed. For each college, also listed is the total number
of yearbooks transcribed, the earliest and the most recent transcribed yearbook, and the total number of
transcribed records for undergraduate students, graduate students, and faculty.

individuals go on to become alumni in the following year; juniors will become seniors in

the following yearbook, so ignoring them during their pre-graduation years saves on time

and expense during the transcription process and prevents accidentally inflating the number

of graduates from a particular year. Yearbooks often, although not always, also include

data on each faculty member, including the faculty member’s name and occasionally the

highest degree obtained, position and title at the university, academic subject, alma mater,

or previous academic positions held.

The yearbook data are of high quality and nearly complete for the years and schools for

which yearbooks are available. To determine how complete the yearbook record is, I compare

the number of seniors, faculty, and graduate students listed in the yearbooks to the same

schools in the same years in the Commissioner of Education reports, described in Section I.E

and B.A. Table A11 lists the mean and standard deviation of each group in the yearbooks

and the Commissioner of Education reports, as well as listing the ratio of each. Because the
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yearbooks and reports are only available in some years, in square brackets I list the number

of instances in which a yearbook and report provided information on the same group from

the same college in the same year. Such a comparison is not possible for the vast majority

of yearbooks (because the Commissioner of Education reports are only available for select

years), and so all conclusions about the completeness of the yearbook data are tentative.

Several features of the reports are worth noting. The reports do not list the number of college

seniors for all years. For these years, I divide the number of undergraduate students by four

to get the number of seniors. If college populations are growing over time so that incoming

classes are larger than the classes that came before, then this procedure will overstate the

number of college seniors in the reports relative to the yearbooks. Likewise, if the reports

misclassify preparatory or professional students as undergraduate students, this will also

overstate the number of seniors in the reports. Additionally, as noted in Appendix B.A, it is

unclear how reliable the data in the reports are; for instance, it is possible that colleges might

inflate their enrollment or faculty counts to try and appear more prestigious or successful in

their educational mission.

As shown in the first row, on average the yearbooks list about 66% as many seniors as

the Commissioner of Education reports. The faculty, shown in Row 3, appear even more

fully represented in the yearbooks relative to the reports, with the yearbooks having on

average 76% as many faculty as the reports. Given the concerns with the reports data raised

above, I consider these to be surprisingly high fractions and thus tentatively conclude that

the yearbooks provide a fairly complete record of the college senior and faculty populations.

Indeed, in Figure A4 I show that in many instances, the yearbooks record more students

and faculty than do the Commissioner of Education reports, although counts of students
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and faculty tend to be clustered close to the 45-degree line.

The yearbooks appear to provide a less complete picture of the graduate students, as

shown in Row 2, with the yearbooks recording only 24% as many graduate students as

are listed in the reports. Indeed, many of the yearbooks list no graduate students at all.

Graduate students are difficult to handle for other reasons, as well. It is typically impossible

to know what year graduate students are expected to graduate; yearbooks rarely list how

many years a student has been at the college or how long the graduate program lasts.

For instance an individual just beginning their PhD might remain a graduate student for

another five years before becoming an alumnus, while professional students may be in a

program for only a couple of years. This is not a concern for undergraduate seniors, because

the vast majority will become alumni in the following year. Therefore, in all of the results in

Section III, I ignore graduate students. Given the size of graduate programs for these years in

the commissioner reports, and the fact that graduate students are likely highly geographically

mobile, even extraordinarily high rates of patenting by graduate student alumni are unlikely

to change the overall conclusions about the role of alumni in local patenting.

D.B Matching Patent and Yearbook Data to the Census

To determine the share of patents coming from alumni or faculty, I merge both the patent

and yearbook data to the U.S. 100% decennial population census records, transcribed by

ancestry.com, Family Search, and the Minnesota Population Center and hosted by the

NBER. I proceed in eight steps.
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Table A11: Comparing Yearbooks to Commissioner of Education Reports

Yearbooks Comm. Ed. Rep. YB / Comm.Ed.

Num. Seniors 319.66 486.82 0.657
(274.96) (346.57) (49.614)

[29.00] [29.00] [29.000]

Num. Grad Students 53.04 217.33 0.244
(106.57) (252.65) (56.583)

[24.00] [24.00] [24.000]

Num. Faculty 156.39 205.89 0.760
(151.81) (123.64) (39.783)

[18.00] [18.00] [18.000]

Notes: A comparison of the number of undergraduate seniors, graduate students, and faculty in the college
yearbooks and the Commissioner of Education reports. Column 1 lists the number of individuals in each
group in the yearbooks. Column 2 lists the number of individuals in each group in the Commissioner of
Education reports. Column 3 lists the ratio of Column 1 to Column 2. Row 1 displays results for seniors,
Row 2 the results for graduate students, and Row 3 the results for faculty. Standard deviations are listed
in parentheses. The number of instances in which a yearbook and Commissioner of Education report both
provide information on the same group from the same college in the same year is listed in square brackets.

Figure A4: Students and Faculty Counts in Yearbooks vs. Commissioner of Education Reports
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Notes: Scatter plots for the number of seniors (Panel (a)) and faculty (Panel (b)) in the yearbooks and
Commissioner of Education reports for all years for which both sets of data are available.
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1. I prepare the census data for each census from 1850, 1860, 1870, 1880, 1900, 1920, 1930,

and 1940. I restrict attention to males.11 For each county in the census, I then link to

records to the same county in the previous census, using a matching procedure that is

a simplified version of Ferrie (1996) and including common names. Doing this for all

censuses allows me to identify the earliest year in which a particular name appears in

a particular county; I am interested in determining whether individuals first appear in

a county before or after the establishment of a new college.

2. I prepare counts of alumni from the yearbook data. To convert the flow of seniors

listed in the yearbook of college in county i to the stock of alumni of college county i

in each year T , I calculate

AlumniiT =
T∑
t=t

Seniorsit ,

where I choose t = T − 60. Under the assumption that college seniors are ≈20 years

old, this means that a particular college senior can plausibly be an alumnus patentee

for the next 60 years. This essentially imposes the assumption that individuals >>80

years old cannot be patentees. Such an assumption appears innocuous, as studies

conclude that very few inventors are older than 80.12

11I restrict attention to males for two reasons. First, women are likely to change their names between the
time they show up in the yearbook data and when they patent later in life. Second, the majority of women
were not a part of the labor force during the sample period, and so occupational scores, used in Section IV.A,
are not informative for them.

12For examinations of inventor ages prior to 1940, see Sarada, Andrews and Ziebarth (2019) and Akcigit,
Grigsby and Nicholas (2017). Papers that document ages of more recent inventors include Jones (2009),
Jung and Ejermo (2014), and Acemoglu, Akcigit and Celik (2014).
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3. I match by first name, last name, state, and county from the patent record to the census

record. This creates a list of all patents in each county for which personal information

about the patentees can be known. See Sarada, Andrews and Ziebarth (2019) for more

details on the patent-census matching procedure. I match individuals to the “closest”

census. For example, for the 1900 census, I match patentees from 1895, 1896, 1897,

1898, 1899, 1900, 1901, 1902, 1903, and 1904.

4. I match the lists of potential alumni and current faculty to the census, again matching

on first name, last name, county, and state. I again match yearbooks to the closest

census.

5. I use the matched census-patent-yearbook data to determine which patentees are

alumni. I calculate an alumnus patenting rate for each college county i,

AlumniPat.Ratei =
1

1940− t0

1940∑
t=t0

Num.AlumniPat.it
Num.Alumniit

Note that both the numerator and denominator are only for those alumni and patents

that I am able to match to the respective census.

6. An adjustment must be made because yearbook data are not available for all years.

Without such an adjustment, the calculated stock of alumni would be too small, and if

many yearbooks are missing, this omission may result in sizable undercounts of alumni

patenting. To correct for this, I interpolate the number of seniors attending the college

in the years in between collected yearbooks.13 I then increase the size of the alumni

13I use a linear interpolation for the baseline results, but other interpolation strategies yield similar or
smaller alumni counts results; see Appendix F.A.
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stock by that number of students for each successive year,

˜AlumniiT =
T∑
t=t

˜Seniorsit ,

where ˜Seniorsit now includes the years for which the number of seniors is interpolated.

7. I calculate the share of patents belonging to alumni, faculty, and “others” based on

known names from the yearbooks.14 That is, I initially calculate the share of patents

belonging to each group without using the interpolated alumni counts; I discuss this

final adjustment in the next step. A patentee is recorded as an alumnus if there is a

positive match between the individual’s name from the alumni list and a name in the

same county in the census and that individual is also linked to a patent. An individual

is recorded as a faculty member if the individual is not recorded as an alumnus and

there is a positive match between his name from the faculty list and a patent-matched

name in the same county in the census. An individual is recorded as “other” if he is

neither an alumnus nor a faculty member. I further split the other group into those

that appear in the census in the college or runner-up county before the year in which

the college was established (“pre-college others”), and those that appear in the college

or runner-up county after the college is established (“post-college others”). To do

this, I use the cross-census linking procedure described in the first step. The post-

college others includes both those who migrate to college or runner-up counties after

the college is established as well as those who are born into those counties after the

14I calculate the patenting rate for each group exactly as I do for AlumniPat.Ratei, with for each group g
the rate given by Pat.Rategi = 1

1940−t0

∑1940
t=t0

Num.Pat.git
Pop.git

, where both the numerator and denominator are

for individuals matched to the census.
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college is established, and so is an imperfect proxy for in-migration.

8. Finally, I adjust the number of alumni patents and the share of patents attributed to

each group to reflect the adjustments to the alumni stock. I multiply the size of the

adjusted alumni stock by the calculated alumni patenting rate to get the corrected

number of patents by alumni,

˜Num.AlumniPat .it = ˜Alumniit ∗ AlumniPat.Ratei

I decrease patent counts for the faculty and others by the corresponding increase in

the number of alumni patents, keeping the relative sizes of the faculty and others the

same. That is, I calculate

Num.Pat.git = (Num.Pat.it − ˜Num.AlumniPat .it) ∗
Num.Pat.git∑
gNum.Pat.git

,

for groups g ∈ {Faculty, Pre− CollegeOthers, Post− CollegeOthers}, Num.Pat.git

are the number of patents by members of group g in college county i and year t, and

Num.Pat.it is the total number of patents in college county i and year t.15

D.C Match Rates

Table A12 displays patent-to-census match rates for the college and runner-up counties in the

entire sample and the yearbook sample, as well as yearbook record-to-census match rates. I

15I impose the additional constraint that Num.Pat.git ≥ 0 for all groups g. In other words, alumni in
county i and year t cannot have more patents than there were total in county i and year t, even if the
adjusted alumni stock and average patenting rate would suggest this to be the case.
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match 22% of the patents to the census in the full sample and 19% in the yearbook sample.

These match rates are roughly double those in Sarada, Andrews and Ziebarth (2019). Several

possibilities exist for this discrepancy. Likely the most important factor is that I use a more

liberal criteria to consider a record a match. Because I argue that the reported alumni and

faculty shares are an upper bound, a more liberal matching criteria, which may include more

false positive matches, is appropriate. In Appendix F.A I show the sensitivity of results to

using a match rate closer to that used in Sarada, Andrews and Ziebarth (2019). Second, in

the matching procedure Sarada, Andrews and Ziebarth (2019) block on state and use each

inventor’s town name as a criteria in the matching. Instead, I block by county but do not

attempt to match town names. Third, I only match patents to males in the census, whereas

Sarada, Andrews and Ziebarth (2019) match to any gender. This will decrease my match

rate relative to that in Sarada, Andrews and Ziebarth (2019), but females account for only

4-8% of all patents over the years I study, and so this is unlikely to have much of an effect.

Finally, I match to more census years than do Sarada, Andrews and Ziebarth (2019) but

match only select counties; the difference in sample could explain any further discrepancies.

Only about 4% of the yearbook records match to the census. Because I use the same

information and matching criteria to match the yearbook records as I do to match the patent

records, and because the yearbook data are likely cleaner with fewer transcription errors,

I interpret this as evidence that most of the students listed in the yearbooks are likely to

out-migrate after they graduate. The fact that some of the colleges are coeducational during

the yearbook years and I only attempt to match to males in the census may also depress the

yearbook-to-census match rate.
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Table A12: Match Rates

Match Rates to Census

Patents 0.224
Patents (Yearbook Colleges) 0.189
Yearbooks (All) 0.042

Notes: Row 1 displays the match rate from the patent records to the census records for all college and
runner-up counties. Row 2 displays the match rate from the patent records to the census records for college
and runner-up counties in the yearbook sample. Row 3 displays the match rate from all yearbook records
to the census records.

D.D Details on the Yearbook Sample

As described above, the yearbook sample was selected with the intention to be representative,

but subject to the constraint that yearbooks were not available for all colleges. To further

explore the representativeness of the yearbook sample, in Table A13, I repeat the baseline

regressions from Table 2 but using only the 20 colleges for which yearbook data are available.

The coefficients are qualitatively similar, although larger in magnitude, to those in the

baseline sample. Figure A5 replicates Figure 4 using just the yearbook sample, and Figure A6

replicates Figure 5 using the yearbook sample.
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Figure A5: Dynamics of the Effect of Local Colleges on Patenting with the Yearbook Colleges Sample
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Notes: Estimated coefficients of the shift in logged patenting after establishment of a new college with a
separate interaction term estimated for each time bin, along with 95% confidence bands. Time bins are are
dummy variables that are equal to one for college counties in every ten year period before and after the
establishment of the new college. The black diamonds show coefficients comparing the college counties to
runner-up counties. Data are for the sample of colleges for which yearbook data are available.
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Table A13: Baseline Regression Results with the Yearbook Colleges Sample

log(Patents +1) arcsinh(Patents) Poisson Any Patents

College * PostCollege 0.785*** 0.922*** 2.927*** 0.205***
(0.163) (0.186) (1.109) (0.054)

County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Year Range 1836-2010 1836-2010 1836-2010 1836-2010
County-Year Observations 10,500 10,500 10,500 10,500

# Counties 60 60 60 60
# Experiments 20 20 20 20

Adjusted R-Squared 0.639 0.639 0.432
Log-Likelihood -106,480.634

Notes: Column 1 estimates the effect of establishing a college on local patenting when the dependent variable
is log(Num.Patents + 1). The dependent variable in Column 2 is the inverse hyperbolic sine of patents.
Column 3 presents results for a Poisson regression. Column 4 presents results of an extensive margin
regression in which the dependent variable is an indicator equal to one if a county has at least one patent.
Results are for the sample of colleges for which yearbook data are available. Standard errors are clustered by
county and shown in parentheses.Stars indicate statistical significance: * p < 0.10; ** p < 0.05; *** p < 0.01

Figure A6: Dynamics of the Effect of Local Colleges on Population with the Yearbook Colleges Sample

(a) Population
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(b) Patents per Capita
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Notes: Estimated coefficient of the shift in logged population (panel a) and patents per capita (panel b)
establishment of a new college with a separate interaction term estimated for each time bin, along with 95%
confidence bands. Time bins are are dummy variables that are equal to one for college counties every ten
years before and after the establishment of the new college. The black diamonds show coefficients comparing
the college counties to runner-up counties. Data are for high quality experiments only. Data are for the
sample of colleges for which yearbook data are available.
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E Robustness Checks and Extensions for Baseline Re-

sults

E.A Runner-Up Counties that Receive a College at a Later Date

One question is how to interpret the treatment effects in light of follow-on investment that

may occur. In particular, the runner-up counties may eventually receive institutions of

higher education of their own.16 After all, each runner-up site was at one point considered

a nearly ideal locations for a college, so it makes sense that if there were plans to establish

an additional college in the region at a later date, the runner-up counties would once again

be prime candidates. While it is possible to manually check for these occurrences for large,

prominent institutions, and then simply exclude all years after the later college is established

in a runner-up site, the U.S. is unique in having a large number of small institutions, many

of which changed names or locations and started informally, making it extremely difficult

to determine the “start date” for many of these schools without a deep exploration of the

narrative history of each institution. Instead, I take the more extreme step of removing from

the sample any runner-up county that had a college in 2010 according to the Integrated

Postsecondary Education Data System (IPEDS).17

Between 60% and 76% of the runner-up counties have a college in the IPEDS data,

depending on what I consider to be a college. The issue of runner-up counties receiving

post-treatment colleges may therefore plausibly lead to substantial underestimates of the

16While this may affect the interpretation of the magnitude of the baseline results, note that all of the
results in Section III observe the identities of patentees within a college county and therefore do not depend
on the follow-on investment, or the lack thereof, in the runner-up counties.

17See https://nces.ed.gov/ipeds/.
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local effect of establishing a college.

To get a sense of the extent to which this issue can affect estimated magnitudes, in

Column 1 of Table A14, I exclude all runner-up counties that have a “traditional” college or

university, defined as all institutions of higher education except for trade schools, professional

schools, for-profit colleges, and community colleges. In Column 2, I also exclude runner-up

counties that have a professional school, such as a specialized seminary or medical school.

In Column 3 I further exclude all trade schools (e.g., cosmetology schools) and for-profit

colleges (e.g., University of Phoenix campuses) that are in the IPEDS data. Finally, in

Column 4 I additionally exclude all community colleges. The prevalence of these various

types of institutions can be seen by the declining sample size in each column. In all cases,

the results are larger than the baseline estimates, and the magnitude increases as more

institutions are excluded, until the exclusion of community colleges. This is consistent with

the results in Section IV.B, which finds that excluding runner-up counties that get other

types of institutions increases the estimated effect of establishing a new college. Care must

be taken in attributing this interpretation to these results, as it may also be driven by

heterogeneity in the types of colleges that remain in the sample after excluding runner-up

counties that eventually get a college of their own. For instance, establishing a large and

prominent college may decrease the need for another college in the same region at a later

date, so only the most successful colleges are included in the samples that exclude runners-up

that get a college.

In some cases, a particular county may be under consideration to receive multiple colleges

that are in my site selection experiment sample. I exclude these counties from the results

in the body of the paper. In Column 5, I include these counties. I estimate the following

40



specification:

PatentMeasureijt =δ1Collegeij ∗ PostCollegejt + δ2PostCollegejt

+ Countyi + Experimentj + Countyi ∗ Experimentj

+ Y eart + εijt. (1)

The difference between this specification and the baseline specification in Equation (1) is the

inclusion of county-by-experiment fixed effects and the experiment fixed effects to account for

the fact that the same county can now appear in multiple site selection experiments. While

it is less intuitive to interpret the variation in this specification, the results are qualitatively

similar to, although a bit smaller than, the baseline results. This is not surprising given

that there are relatively few cases in which the same runner-up county appears in multiple

experiments.

Table A14: Runner-Up Counties with Colleges

No Traditional No Traditional/Professional No Non-Community No Colleges Counties in
Colleges Colleges Colleges of Any Type Multiple Experiments

College * PostCollege 0.639*** 0.656*** 0.703*** 0.696*** 0.334***
(0.140) (0.140) (0.165) (0.186) (0.102)

County FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes

County-Experiment FE No No No No Yes
Year Range 1836-2010 1836-2010 1836-2010 1836-2010 1836-2010

County-Year Observations 12,950 12,600 10,675 8,575 40,775
# Counties 71 69 59 47 180

# Experiments 27 27 24 20 73
Adjusted R-Squared 0.523 0.528 0.524 0.517 0.610

Notes: Column 1 excludes all runner-up counties with a traditional college in 2010. Column 2 also excludes
all runner-up counties with a professional school in 2010. Column 3 additionally excludes all runner-up
counties with a trade school or for-profit college in 2010. Column 4 additionally excludes all runner-up
counties with a community college in 2010. Column 5 includes runner-up counties that appear in multiple
college site selection experiments. Results are for high quality experiments only. Standard errors are clustered
by county and shown in parentheses. Stars indicate statistical significance: * p < 0.10; ** p < 0.05; ***
p < 0.01
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E.B Additional Specifications

In this section, I estimate several additional regression specifications to demonstrate that

the baseline results described in Section II are robust. Results are presented in Table A15.

Perhaps the most natural robustness exercise is to include experiment-by-year fixed ef-

fects to the baseline model, removing any experiment-specific time varying factors. More

specifically, I estimate:

PatentMeasureit =δ1Collegei ∗ PostCollegeit+

+ Countyi + Y eart + Experimentj ∗ Y eart + εijt. (2)

Results, presented in Column 1, are very similar to the baseline estimates, with college

counties having 50.6 log points more patents per year than the runner-up counties after the

college is established.

In Column 2, I estimate the following:

log(Patents+ 1)it = δ1Collegei ∗ PostCollegeit + δ2PostCollegeit + Countyi + Y eart + εit.

(3)

This is identical to the baseline specification in Equation (1) except for the inclusion of the

PostCollegeit indicator, which is equal to one for all counties i in the same experiment and

all years t after the experiment’s college has been established. With only a single college site

selection experiment, the term PostCollegeit would be redundant because the post-college

dummy is perfectly co-linear with the year effects. There are multiple experiments in the
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dataset, however, with each college being established in different years, and so each set

of counties will be in the post-college period in different years. PostCollegeit controls for

changes that occur within all counties affiliated with a given college experiment after that

experiment occurs, similar to the experiment-by-year fixed effects in the previous section.

While the PostCollegeit indicator does not have a natural economic interpretation, it can

provide some suggestive information. For instance, if the coefficient on PostCollegeit were

significantly negative and similar in magnitude to the coefficient on Collegei ∗PostCollegeit,

this suggests that any increase in patenting in college counties is coming from a reallocation

of activity away from the runner-up counties. Column 2 shows that this is not the case;

the coefficient on PostCollegeit is close to zero in magnitude and not statistically signifi-

cant, while the coefficient on Collegei ∗ PostCollegeit is similar to the baseline estimates in

Table 2.18

In Column 3, I control for county-specific linear pretrends. In this specification, college

counties have 47.4 log points more patents per year relative to the runner-up counties after

establishing the new college, which is also very close to the baseline estimate.

In Column 4, I estimate an “intensive margin” specification, the complement to the

extensive margin results in Column 4 of Table 2. I keep only the county-year observations

with at least one patent and use logged patenting as the dependent variable; in contrast to

other specifications, I do not transform the number of patents using the log(Patents + 1)

transformation. The results are a bit smaller in magnitude than the baseline estimates,

with college counties having 27.5 log points more patents per year relative to the runner-up

18In prior versions of this paper, the specification in Column 2 was the baseline specification used in
Table 2.
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counties after establishing the college; this coefficient is not statistically significant. The lack

of statistical significance is not surprising, as about 45% of the county-year observations are

lost when restricting attention to counties with a positive number of patents. See Table A4

above for more information on how many counties have positive numbers of patents.

In Column 5, I use an alternative approach to handling counties with few patents, bottom

coding the count of patents at the 5th percentile of patents in the U.S. in each year. In most

years, the 5th percentile counties by patenting have zero patents, so this bottom coding

method will still result in counts of zero in some years. I therefore again use log(Patents+1)

as the dependent variable as in the baseline specifications. In this specification, establishing

a new college causes 48.1 log points more patents per year relative to the runner-up counties

after establishing the college, again nearly identical to the baseline estimates. In Column 6,

I use an alternative bottom coding procedure, in which I bottom code patent counts using

the 5th percentile of non-zero patents in the U.S. in each year. I then use log(Patents),

without adding an arbitrary constant, as the dependent variable. With this bottom coding

method, I find that establishing a college causes about 54.5 log points more patents per year

in the college counties relative to the runners-up and the estimate is statistically significant

at the 1% level.

Column 7 uses another alternative method to count patents, following the approach

proposed by Blundell, Griffith and Van Reenen (1995). Rather than adding a positive

constant before taking the log of patents, this alternative method uses log(Patentsit) as the

dependent variable. Whenever Patentsit = 0, a dummy variable is set to one and log(0)

is replaced with 0. In this specification, establishing a new college leads to 34.4 log points

more patents per year in the college counties relative to the runners-up.
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In Column 8, I use another construction of logged patenting that adds a different arbitrary

constant to the counts of patents, log(Patents+0.0001). These results are much larger than

the baseline estimate. This is not surprising in light of the intensive and extensive margin

results, since log(Patents+ 0.0001) specification penalizes having zero patents more heavily

than the baseline specification that uses log(Patents+ 1) as the dependent variable.

Finally, Column 9 displays the results using the number of patents as the dependent

variable in a simple linear specification. Establishing a new college causes about 8.2 addi-

tional patents per year in the college counties. In sum, while the exact magnitude varies,

all specifications tell the same story: establishing a new college causes a sizable increase in

local patenting.

E.C Preexisting Colleges

There may be a distinction between establishing an additional college in a county and estab-

lishing the first college in a county. In the baseline results, I consider the establishment of

any college for which I can identify high quality runner-up counties, independent of the pres-

ence or absence of previously established colleges in either the college or runner-up counties.

In practice, the focal colleges I study were often the first colleges built in an area, par-

ticularly for western states. In cases where previous colleges existed, they were typically

extremely small, with tenuous survival prospects, relative to the experimental college in my

sample. Nevertheless, a college’s effect on a local area may systematically differ depending

on whether or not a preexisting college was present. I systematically investigate these issues

in Table A16.
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For the results in Column 1, I return to the narrative college histories and exclude any

cases in which the presence of a preexisting college was mentioned as a factor in the college

site selection decision. For instance, in the cases of several land grant colleges such as Virginia

Tech, the state decided to allocate its land grant status, and enlarged state and federal

support and visibility that went with it, to one of several existing institutions (Kinnear,

1972; Wallenstein, 1997).19 When excluding these cases, establishing a college causes about

61 log points more patents per year in the college county relative to the runners-up, relative

to a baseline increase of 48.1 log points.

In Column 2, I examine only the cases in which the presence of a preexisting college was

mentioned as a factor in the college site selection decision.20 The estimate is a bit larger

than that in Column 1 and still statistically significant, with college counties producing 68.1

log points more patents per year relative to the runner-up counties.

The narrative histories may fail to mention all preexisting colleges in the college and

runner-up counties, and even if these preexisting institutions did not affect the site selection

decision, they still may have systematically influenced the new college’s effect on the local

economy. To account for this, in Column 3 I turn to the Commissioner of Education reports

(discussed in Section I.E and B.A) and exclude any cases in which the reports list the

presence of colleges in the college county in the years before the focal college is established.

In addition to the concerns about the accuracy and completeness of the Commissioner of

Education reports raised above, the reports are not available in the years before college

19When a preexisting college was mentioned as a factor in a runner-up county, I omit the runner-up county.
When a preexisting college was mentioned as a factor in the college county, I omit the entire experiment,
dropping the college county and all runner-up counties.

20More specifically, I keep all counties in any experiment for which a preexisting college was mentioned as
a factor for either the college county or any of the runner-up counties.
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establishment for all of the colleges in the sample. Nevertheless, when excluding these cases,

I find results that are similar to the baseline results.

Finally, in Column 4 I exclude all experiments in which the Commissioner of Education

reports list the presence of colleges in the years before the focal college is established in any

of the experiment counties, not just in the college county. The result is similar to, although

a bit smaller than, the baseline estimate and the estimate in Column 3.

In short, across all specifications, it does not appear that the presence or absence of

preexisting colleges substantially alters the interpretation of the results.

Table A16: Experiments with and without Preexisting Colleges

Previous College Not Previous College No Previous Colleges No Previous
Factor in Decision Factor in Decision in Treatment County Colleges

College * PostCollege 0.610*** 0.681*** 0.444*** 0.360**
(0.194) (0.194) (0.158) (0.162)

County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Year Range 1836-2010 1836-2010 1836-2010 1836-2010
County-Year Observations 24,325 12,600 31,500 26,250

# Counties 134 68 163 140
# Experiments 48 22 60 51

Adjusted R-Squared 0.602 0.670 0.607 0.620

Notes: Column 1 excludes all cases in which the presence of a preexisting college was a factor in the decision
of where to locate the college. Column 2 includes only the cases in which the presence of a preexisting
college was a factor in the decision of where to locate the college. Column 3 includes only the cases in which
the college county did not have any preexisting colleges at the time of the college site selection experiment.
Column 4 includes only the cases in which none of the college or runner-up counties had any preexisting
colleges at the time of the college site selection experiment. Results are for high quality experiments only.
Standard errors are clustered by county and shown in parentheses. Stars indicate statistical significance: *
p < 0.10; ** p < 0.05; *** p < 0.01
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E.D Alternative Geographic Boundaries

Clearly, colleges can affect invention across county borders as well. If a college is very

close to a county border, or if a county is very small, then counties may not be the best

geographical unit at which to examine the results. In Column 1 of Table A17 I present

results at the commuting zone level, dropping any runner-up observations that take place in

the same commuting zone as the college. I use commuting zone definitions providing by the

U.S. Department of Agriculture Economic Research Service for the year 1980, the earliest

year for which commuting zones are defined (https://www.ers.usda.gov/data-products/

commuting-zones-and-labor-market-areas/). Results are nearly identical when using

commuting zones defined for 1990 or 2000. The estimated treatment effect is a bit larger

than the baseline result, with commuting zones that receive a new college having about

57.1 log points more patents per year relative to their runner-up commuting zones after the

college is established. While it is encouraging that this result is qualitatively similar to the

baseline estimate, I prefer to use counties as the baseline level of geographic aggregation

throughout the paper. Commuting zones were determined based on modern patterns of

economic activity, and hence are endogenous to the historical establishment of colleges.

In Column 2 of Table A17 I present results at the town or municipality level. These

results, using a smaller level of geographic aggregation, also have several drawbacks. First,

some specifications include control variables that are only available at the county level.

Second, and perhaps more important, the towns of residence listed on patents are often

unreliable for historical patents. Inventors are free to record their location any way that

they want, and especially outside of major cities town or municipal boundaries may not
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have been well-defined or inventors may have erroneously recorded their location of residence

as the nearest town. Inside large cities, inventors may have recorded their location as a

neighborhood rather than the city (e.g., Charlestown instead of Boston, MA). While there

is thus substantial uncertainty about a patent’s municipality, it is usually easy to assign

a patent to a county; all neighborhoods within a city will be in the same county, as will

typically outlying areas surrounding a town. Finally, municipal boundaries have changed

much more over time than have county borders. I find that a town that receives a college

has a statistically significant 8.8 log points more patents per year than the runner-up towns

after establishing the college. This estimate is smaller than the county and commuting zone

estimates, consistent with attenuation from the measurement errors described above as well

as substantial geographic spillovers across town borders.

E.E Alternative Samples of Colleges

I conduct a number of additional robustness checks as well. To further show that the

results are not driven by the subjective classification of some experiments as either high

or low quality, I re-estimate the baseline regression excluding each high quality experiment,

one at a time, and re-estimating the baseline regression. I also reclassify each low quality

experiment as high quality, one at a time, and re-estimate the baseline regression. In all cases,

the estimated coefficient is very similar to the baseline result and statistical significance is

unchanged. A related concern is that the results are driven primarily by large cities, as in

the example of Georgia Tech mentioned in the Introduction. It may be a stretch to believe

that all of the differences between Atlanta and Macon that occurred after the establishment
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of Georgia Tech were due to its creation (although Georgia Tech was likely the cause of some

follow-on investment). To verify that these largest cities are not driving the results, I omit

data from counties with large populations and find that the results are largely unchanged.

An additional concern is that different types of college experiments may be systematically

different from one another. While each experiment is unique, they tend to fall into groups

in which the colleges were assigned with different general methods. It would be suspicious

if one method of “random” assignment gave systematically different results from other such

methods. I test this by grouping experiments by the method in which the college was assigned

and then verifying that the estimated coefficients are similar across different groups. All of

these results are available upon request.

E.F A Placebo Test

I next conduct a placebo test to determine whether patenting changes differentially in college

and runner-up counties in the years leading up to the college site selection experiment. I drop

all data for the years after and including the year in which the college was established; all the

remaining data is from pre-treatment years. I then artificially designate the halfway point

between the first year of observations and the last pre-experiment year as the “experiment

year” and re-run the baseline regressions. Results are presented in Columns 1 and 2 of

Table A17, with Column 1 showing the effects on logged patenting and Column 2 showing

the effects on logged county population. If the college counties are up-and-coming places,

then they should be growing faster then the runner-up counties in the years before the original

college site selection experiment, both in terms of the number of inventions and the size of the
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population, and the estimated coefficient (College∗“PostCollege”) should be significantly

positive. Instead, neither of the coefficients are statistically different from zero and, while

slightly positive, are close to zero in magnitude relative to their counterparts in Table 2. I

take this as further evidence that the college site selection experiment is valid. Results are

very similar if I instead designate random pre-college years as the placebo “treatment” year.

Table A17: Results at Other Geographic Levels and a Placebo Test

Commuting Zones
Zones Towns log(Patents + 1) log(Population)

College * PostCollege 0.571*** 0.088** 0.044 0.166
(0.159) (0.040) (0.060) (0.122)

County FE No No Yes Yes
Experiment FE Yes No Yes Yes

County-Experiment FE No No Yes Yes
Commuting Zone FE Yes No No No

Commuting Zone-Experiment FE Yes No No No
Town FE No Yes No No
Year FE Yes Yes Yes Yes

Year Range 1836-2010 1836-1945 1836-1953 1840-1950
County-Year Observations 25,200 25,440 8,839 689

# Counties 136 234 191 173
# Experiments 73 73 63 62

Adjusted R-Squared 0.630 0.268 0.217 0.540

Notes: In Column 1, I present baseline regression results estimated at the commuting zone level rather than
the county level. In Column 2, results are estimated at the town level rather than the county level. In
Columns 3 and 4, the baseline regression results are reproduced with all post-experiment data dropped. The
experiment year is set to halfway between the initial year of patent data and the year prior to the original
college site selection experiment. In Columns 1-3 the dependent variable is log(Patents+1), while in Column
4 it is log(Population). Results are for high quality experiments only. Standard errors are clustered by county
and shown in parentheses. Stars indicate statistical significance: * p < 0.10; ** p < 0.05; *** p < 0.01

E.G Patent Classes

Establishing a new college may alter the composition of patented technologies in addition

to changing the total number of patents. To get a sense of patent technology type, in
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Table A18 I use the patent classes assigned to historical patents by Marco et al. (2015)

to examine how patenting across all classes changes after establishing a new college.21 In

Column 1, I include controls for the share of patents in each county that belong to each

of the NBER patent classes (patents with missing classes is the omitted category). The

differences-in-differences estimate is about 11% the size of the baseline estimate and is no

longer statistically significant.

In Column 2, I repeat the baseline estimate at the patent class-by-county-by-year level.

That is, I estimate:

PatentMeasureijct =δ1Collegei ∗ PostCollegeit + δ2PostCollegeit

+ Countyi + Classc + Y eart + Classc ∗ Y eart + εijct, (4)

for patent classes c. This specification thus includes patent class and patent class-by-year

fixed effects, flexibly picking up the fact that certain types of technology may be more or less

prevalent at different points in time. The coefficient is larger than that in Column 1 but still

statistically insignificant and much smaller than the baseline estimates. Thus, in addition to

changing the number of patents in a county, establishing a college appears to substantially

shift the technology classes in which counties patent.

The results in Columns 1 and 2 suggest that shifting in the composition of types of

inventions patented in college counties after a new college is established accounts for a large

share of the increases in patenting. Are college counties becoming increasingly specialized

21The NBER one-digit patent classes are: chemical, communications, medical, electric, mechanical, other,
no class, and missing class. All results in this section are similar when using two-digit NBER patent classes,
USPTO patent classes, or IPC classifications.
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in a few narrow technology areas that happen to be especially patent-prone? This does

not appear to be the case. To see this, I construct a Herfindahl-Hirschman index of patent

concentration:

PatentConcentrationit =
∑
c∈Cit

( Patentsc∑
k∈Cit

Patentsk

)2
(5)

where Cit is the set of all patent classes in county i at time t. I construct this index using two-

digit NBER patent classes, although results are similar with other patent class measures.

Results are presented in Column 3 of Table A18. A new college causes concentration to

increase, although the sign reverses after controlling for the number of patents granted

in each county in Column 4 (since concentration is mechanically related to the number of

patents, especially for small absolute numbers of patents), and neither estimate is statistically

different from zero.

E.H Patent Quality

As Trajtenberg (1990) makes clear, looking at raw patent counts without correcting for

patent quality can produce misleading results. Ex ante, it is not clear whether patents in

college counties should be expected to increase or decrease in average quality after estab-

lishing the college. On one hand, patents coming from more educated inventors might be

expected to be of higher quality. On the other hand, more educated individuals, especially

those trained in subjects like law, may have better access to the legal system and therefore

patent more marginal inventions, leading to lower average quality. A third possibility is

that the change in patenting is driven by shifts in the size of the population but not in the
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Table A18: Patent Classes

Control for By Patent Class Class
Patent Classes Classes Concentration Concentration

College * PostCollege 0.063 0.146 587.970 -67.005
(0.199) (0.172) (548.692) (205.333)

Number of Patents 30.928***
(5.643)

Control for Distribution of Classes Yes No No No
Class FE No Yes No No

Class-Year FE No Yes No No
County FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes
Year Range 1836-2010 1844-1975 1836-2010 1836-2010

County-Year Observations 12,683 75,537 8,393 8,393
# Counties 174 174 174 174

# Experiments 63 63 63 63
Adjusted R-Squared 0.602 0.528 0.323 0.670

Notes: Column 1 includes a control for the fraction of patents in each NBER patent class. Column 2
estimates the results at the class-by-county-by-year level. Column 3 estimates the change in patent class
concentration. Column 4 repeats the estimates in Column 3 but includes a control for the number of patents
granted in each county. Results are for high quality experiments only. Standard errors are clustered by county
and shown in parentheses. Stars indicate statistical significance: * p < 0.10; ** p < 0.05; *** p < 0.01

distribution of inventive abilities, in which case the distribution of patent qualities may not

change at all. Following Hall, Jaffe and Trajtenberg (2001) and Hall, Jaffe and Trajtenberg

(2005), I check whether the number of patent citations and citations per patent change in

college counties relative to the runners-up after the establishment of a new college. I thank

Enrico Berkes for providing lifetime citation counts for the universe of patents (see Berkes

(2018)).

In Column 1 of Table A19, I show that the absolute number of patent citations in college

counties increases by 69.4 log points relative to the runner-up counties after establishing a

new college. This is larger in magnitude than the percentage change in the total number of

patents granted in college counties. The next three columns investigate changes in citations

per patent after establishing a new college. Column 2 shows that citations per patent
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(Citationsit
Patentsit

, where Citationsit measures lifetime forward citations for all patents granted in

county i in year t) increases by about 2.5 citations per patent in college counties relative

to the runners-up after the college is established, which is statistically significant at the 1%

level. In Column 2, I omit any counties with zero patents for which the number of patents

in the denomination of Citationsit
Patentsit

is zero; in Column 3 I include these counties and code

citations per patent to be zero in these cases, as well as including a dummy variable for zero

patents. In Column 4, I also control for the distribution of patent classes in each county as

in Column 1 of Table A18; this is due to the fact that some classes may inherently receive

more citations than others. The coefficients in Columns 3 and 4 are similar in magnitude

and significance to that in Column 2.

To get a better sense of whether the increasing average patent quality is driven by more

“superstar” patents or a rightward shift of the entire distribution, I estimate whether the

share of patents falling in the tails of the distribution of forward citations changes in the

college counties relative to the runners-up following the establishment of a new college.

Column 5 estimates the change in the fraction of a county’s patents that fall below the 10th

percentile of patents in terms of forward citations in each year. While I find a large increase

in the share of patents in the 10th percentile or below, the estimate is extremely noisy. In

Column 6, I estimate the change in the fraction of patents falling in the 90th percentile of

forward citations or above in each year; this coefficient is also large but extremely imprecisely

estimated. Taking all the citation results together, patents in college counties appear to

receive more citations, although it is less clear exactly how the distribution of citations shifts

in college counties relative to the runners-up after establishing the college.

Unfortunately, patent citations are only consistently available beginning in 1947, making
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them a less-than-ideal measure when using historical patent data. This means that patents

from the 19th century which may have been highly impactful for decades will still being

recorded as having zero forward citations if they were not cited by another patent that

issued after 1947. This is likely to include most of the patents in the years prior to college

establishment. I therefore use an alternative measure to gauge patent quality. As suggested

in Kuhn and Thompson (2019), the length of a patent’s first claim is an informative measure

of a patent’s scope, and hence its quality. A patent’s claims formally define the legal scope

of an invention. The first listed claim is typically the most broad. A very short first claim

therefore indicates a patent with a very broad legal scope, while a long claim indicates a

patent that is narrow in scope. Kuhn and Thompson (2019) and Kuhn, Younge and Marco

(2017) argue that patent claim length is in fact more informative of patent quality than

citation-based measures. Additionally, unlike patent citations, claims are recorded in the

body of a patent for all patents granted in the U.S. from 1836 onward. I use the patent

body text and claim counts from Enrico Berkes. I again thank Enrico Berkes for graciously

providing this data.

In Column 1 of Table A20, I re-estimate the baseline regression specification using the

average number of words in the first claim for all patents granted within each county in

each year as the dependent variable. Column 2 uses the logged number of words in the first

claim as the dependent variable. Neither measure is statistically significant and both are

small in magnitude. Column 3 estimates the change in the share of patents at or below

the tenth percentile of the first claim length distribution, representing the very broadest

patents granted in a particular year. Column 4 estimates the change in the share of patents

at or above the 90th percentile, the narrowest patents. Again, neither coefficient is large
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in magnitude. Thus when using this alternative measure of patent quality, which may be

more informative over the entire length of the sample period, establishing a college has no

measurable effect on patent quality.

Table A19: Patent Quality: Forward Citations

Citations Citations Citations Fraction of Citations Fraction of Citations
log(Citations + 1) per Patent per Patent per Patent below 10th Percentile above 90th Percentile

College * PostCollege 0.694*** 2.524*** 2.680*** 2.644*** 5.455 7.724
(0.204) (0.898) (0.514) (0.514) (4.898) (7.248)

Zero Pat. Dummy -3.555*** -3.942***
(0.309) (0.403)

County FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

Year Range 1836-2010 1836-2010 1836-2010 1836-2010 1836-2010 1836-2010
County-Year Observations 33,288 18,229 33,425 33,425 5,981 5,981

# Counties 174 174 174 174 173 173
# Experiments 63 63 63 63 63 63

Adjusted R-Squared 0.715 0.423 0.412 0.413 0.506 0.485

Notes: Column 1 estimates the change in the number of logged lifetime forward citations for all patents in a
county. Column 2 estimates the change in the average citations per patent, omitting any counties with zero
patents. Column 3 estimates the change in the average citations per patent, including a dummy variable for
counties with zero patents. Column 4 re-estimates Column 3 but also controls for the distribution of patent
classes. Column 5 estimates the change in the fraction of a county’s patents that are at or below the 10th
percentile of patents with respect to forward citations in each year. Column 6 estimates the change in the
fraction of a county’s patents that are at or above the 90th percentile of patents with respect to forward
citations in each year. Results are for high quality experiments only. Standard errors are clustered by county
and shown in parentheses. Stars indicate statistical significance: * p < 0.10; ** p < 0.05; *** p < 0.01

E.I Results with Low Quality Site Selection Experiments

In Table A21, I repeat the analysis in Table 2 but include data from all colleges and counties

for which runner-up sites can be identified. This includes the “low quality” experiments

as well as other runner-up counties in the high quality experiments that were nevertheless

not as good as randomly assigned and so are excluded from the baseline sample. Instead of
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Table A20: Patent Quality: Claim Length

Length of Fraction of 1st Claim Fraction of 1st Claim
1st Claim log(Length of 1st Claim) below 10th Percentile above 90th Percentile

College * PostCollege -1.077 -0.035 -0.002 0.008
(2.992) (0.025) (0.016) (0.018)

County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Year Range 1836-2010 1836-2010 1836-2010 1836-2010
County-Year Observations 5,687 5,687 5,687 5,687

# Counties 173 173 173 173
# Experiments 63 63 63 63

Adjusted R-Squared 0.336 0.386 0.022 0.022

Notes: Column 1 estimates the change in the average number of words in a patent’s first claim in the college
counties relative to the runner-up counties after the establishment of a college. Column 2 estimates the
change in the average logged number of words in a patent’s first claim. Column 3 estimates the change in
the fraction of a county’s patents that are at or below the 10th percentile of patents with respect to the
length of first claim in each year. Column 4 estimates the change in the fraction of a county’s patents that
are at or above the 90th percentile of patents with respect to the length of first claim in each year. Results
are for high quality experiments only. Standard errors are clustered by county and shown in parentheses.
Stars indicate statistical significance: * p < 0.10; ** p < 0.05; *** p < 0.01

estimating Equation (1), I now estimate a triple-difference equation of the form

PatentMeasureijt =δ1Collegeij ∗HighQualityj ∗ PostCollegeijt

+ δ2Collegeij ∗ PostCollegeijt + δ3HighQualityj ∗ PostCollegeijt

+ δ4PostCollegeijt + Countyi + Y eart + Experimentj + εit. (6)

The indices mean the same as in the previous equations; I also index experiments by j as in

Equation (2) since with the larger sample of colleges it may be the case that a county is a

runner-up county in multiple experiments. Now HighQualityj is equal to one if experiment j

is included in the original baseline sample (that consists of only the high quality experiments)

and zero otherwise.

I estimate Equation (6) using the same dependent variables as in Columns 1-4 of Ta-

59



ble 2. In the new regression specifications, the coefficient of the triple-interaction term,

Collegeij ∗ HighQualityj ∗ PostCollegeijt, measures how much larger the differences-in-

differences estimator between high quality college and runner-up counties is compared to the

differences-in-differences estimator between all college counties (high and low quality) and

all runner-up counties (not just the high quality runners-up). This coefficient is negative, al-

though not statistically significant, when using logged patenting and the inverse hyperbolic

sine of patenting as the dependent variables, negative and statistically significant in the

Poisson regression, and positive and statistically significant at the 10% level in the extensive

margin model. In most specifications, it therefore appears that the low quality experiments

over-estimate the effect of a college relative to the high quality experiments, although this

difference is typically imprecisely estimated. The coefficient on Collegeij ∗ PostCollegeijt

estimates the increase in patenting in all college counties relative to all runner-up counties

after establishing a new college. The estimated coefficient is positive and significant, so the

qualitative conclusions of the baseline specification in Table 2 are still true even if the low

quality experiments are included, although the magnitudes are larger for all specifications

except that in Column 4. The increase in patenting in high quality college counties over

high quality runner-up counties after establishment of a new college (that is, the same quan-

tity as estimated by the differences-in-differences term in Equation (1)) is given by adding

the coefficient on the triple interaction term to the interaction term for all colleges in the
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post-college periods.22 Combining these coefficients reveals that high quality college counties

increase patenting by amounts broadly similar to the findings in Columns 1-4 of Table 2.

In Figure A7, I present the analog to Figure 4 but compare only the low quality colleges

to their runner-up counties. More precisely, I estimate

PatentMeasureijt =
∑
τ∈T

[β1τCollegeij ∗ TimeBinτ + δ2τTimeBinτ ]

+ Countyi + Y eart + Experimentj + εijt. (7)

for the low quality colleges j and plot the β1τ coefficients. While the overall dynamics are

similar to those for the baseline sample in Figure 4, a pre-trend is apparent, confirming

the suspicion that runner-up counties are less suitable as counterfactuals for the low quality

experiments.

E.J Additional Results on Colleges and Population

I present several additional results relating to colleges and population. Because population

variables are collected from the decennial U.S. population censuses, I first restrict the data

to observations that occur only in the census years: 1840, 1850, 1860, etc. Thus the outcome

variable is the log of the number of patents granted in the ten years closest to each census

year. In Column 1 of Table A22, I reproduce the baseline result on patenting using only

22Let y = log(Patents+ 1). Then, the coefficient of interest is

(E[yCollege,HighQuality,PostCollege]−E[yCollege,HighQuality,PreCollege])

− (E[yRunUp,HighQuality,PostCollege]− E[yRunUp,HighQuality,PreCollege])

=[δ1 + δ2 + δ3 + δ4]− [0]− [δ3 + δ4] + [0]

=δ1 + δ2.
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Table A21: Results with High and Low Quality College Site Selection Experiments

log(Patents +1) arcsinh(Patents) Poisson Any Patents

College * HighQuality * PostCollege -0.238 -0.226 -0.281** 0.065*
(0.198) (0.216) (0.136) (0.034)

College * PostCollege 0.656*** 0.725*** 1.939*** 0.072***
(0.148) (0.161) (0.372) (0.024)

County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Experiment FE Yes Yes Yes Yes
Year Range 1836-2010 1836-2010 1836-2010 1836-2010

County-Year Observations 133,845 133,845 133,845 133,845
# Counties 462 462 462 462

# Experiments 181 181 181 181
Adjusted R-Squared 0.662 0.664 0.465

Log-Likelihood -3,647,787.791

Notes: Column 1 estimates the effect of establishing a college on local patenting when the dependent variable
is log(Patents+ 1). The dependent variable in Column 2 is the inverse hyperbolic sine of patents. Column
3 presents results for a Poisson regression. Column 4 presents results of an extensive margin regression in
which the dependent variable is an indicator equal to one if a county has at least one patent. All columns use
both high and low quality college site selection experiments. Results are for high quality experiments only.
Standard errors are clustered by county and shown in parentheses. Stars indicate statistical significance: *
p < 0.10; ** p < 0.05; *** p < 0.01

62



Figure A7: Dynamics of Treatment Effect for the Low Quality Experiments
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Notes: Estimated coefficients of the shift in logged patenting in college counties with a separate interaction
term estimated for each time bin, along with 95% confidence bands. Time bins are are dummy variables that
are equal to one for college counties in every ten year period before and after the establishment of the new
college. The black diamonds show coefficients comparing the college counties to runner-up counties. Data
are for low quality college site selection experiments.
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patenting in census years. The estimated coefficient is similar to the baseline coefficient

estimated in Column 1 of Table 2. Column 2 reproduces the results from Column 1 of

Table 4 and shows the effect of a new college on logged county population.

In Column 3, I re-estimate Equation (1) but include log(Population) as a control. Not

surprisingly, county population is highly predictive of county patenting (a ten percent in-

crease in population leads to a 7.8% increase in patenting). When including log(Population),

the coefficient on the interaction term of interest is only about 15.8% of the baseline esti-

mate, decreasing from 48.4 log points more patents per year in the baseline to 0.9 log points

more patents per year. In Column 4, I remain agnostic about the functional form that pop-

ulation can take in the model, employing fractional polynomial regression as proposed by

Royston and Altman (1994). I estimate a second degree polynomial, but results are simi-

lar with higher dimensions. I omit the coefficients on the polynomial terms for readability.

When population is allowed to take a flexible form, the coefficient on the interaction term

of interest drops even further, to only 13.4% of its baseline value. Thus, simply controlling

for population in the baseline regression can explain about 85% of the observed increase in

patenting. Moreover, in both cases the estimated effect of establishing a new college is not

statistically significant at conventional levels, and so I cannot reject the null hypothesis that

population can explain all of the observed increase in patenting in college counties after the

establishment of a new college. Of course, these results should not be interpreted as causal;

in the language of Angrist and Pischke (2009), population is a “bad control” for patenting

since it is also affected by the treatment of establishing a college.

If knowledge spillovers are larger when individuals can interact with alumni or college

students, then simply controlling for population may be capturing the effect that migrants
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are endogenously sorting to places where these spillovers are largest. As a crude test of this,

I check whether a marginal increase in population has a larger effect on patenting in college

counties than in runner-up counties. Formally, I estimate

log(Patentsit + 1) =δ1Collegei ∗ PostCollegeit + δ3 log(Populationit)

+ δ3Collegei ∗ PostCollegeit ∗ log(Populationit)

+ Countyi + Experimenti + Y eart + εit. (8)

Results are presented in Column 5 of Table A22. There is some evidence that increasing

population increases patenting more in college counties (measured by δ3). A 10% increase

in population increases the differences-in-differences estimate by a statistically significant

5.9%. Results are similar when using other functional forms or semiparametric regressions

for county population.

Appendix G.D shows heterogeneous treatment effects of establishing colleges on the basis

of population at the time each college is established, among other dimensions of heterogeneity,

and thus avoids challenges in interpreting ex post endogenous controls.
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Table A22: The Effect of Colleges on Patenting when Controlling for Population

log(Patents + 1) log(Population) log(Patents + 1) log(Patents + 1) log(Patents + 1)

College*PostCollege 0.484** 0.503*** 0.094 0.080 -6.178***
(0.190) (0.169) (0.121) (0.090) (0.718)

log(Population) 0.775*** 0.665***
(0.071) (0.076)

College * PostCollege * log(Total Pop.) 0.592***
(0.068)

Population Fract. Polynomials No No No Yes No
County FE Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes
Year Range 1840-2010 1840-2010 1840-2010 1840-2010 1840-2010

County-Year Observations 3,230 3,230 3,230 3,230 3,230
# Counties 174 174 174 174 174

# Experiments 63 63 63 63 63
Adjusted R-Squared 0.692 0.723 0.823 0.887 0.847

Notes: Column 1 estimates the effect of establishing a college on local patenting when the dependent variable
is log(Patents + 1). Column 2 estimates the effect of establishing a college on local population when the
dependent variable is log(Population). The dependent variable for Columns 3-5 is log(Patents+1). Column
3 re-estimates Column 1 but includes a control for log(Population). Column 4 re-estimates Column 1 but
includes fractional polynomial controls for population. Column 5 estimates the effect of establishing a college
on local patenting when the dependent variable is log(Patents + 1) when controlling for log(Population)
and interacting log(Population) with a dummy for college counties, a dummy for post-college years, and the
interaction term. Results are from census years only and log(Patents+ 1) measures the number of patents
in the ten years closest to the census year. Results are for high quality experiments only. Standard errors are
clustered by county and shown in parentheses. Stars indicate statistical significance: * p < 0.10; ** p < 0.05;
*** p < 0.01
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F Additional Results on Patenting by Alumni and Fac-

ulty

F.A Patenting by Alumni and Faculty Under Alternative Data

Construction Assumptions

In this section, I reproduce results for the share of population and patents coming from

alumni, faculty, and pre- and post-college others under several alternative assumptions.

In the baseline results, shown in Table 5, I consider a patent to belong to an alumnus

or faculty member if the name on a patent record matches to a name from the yearbook

records, regardless of how many individuals in the census have the same name. This “John

Smith problem” could substantially overstate the share of patents coming from alumni and

faculty if a large share of patents belong to individuals with common names (Bailey et al.,

2020). In Table A23, I instead assign an alumnus or faculty 1
N

of a patent if they share a

name with N other individuals in the same county and census year. Perhaps surprisingly,

this common name issue does not appear to substantially bias upwards the share of patents

from alumni and faculty: under the new method, alumni and faculty account for about

11.7% of all patents instead of 11.9% in the baseline results.

In the baseline results, I consider two records to be a match if they have a bigram

matching score of 0.8 or above.23 In Table A24, I present matching results when requiring a

ratio of 0.85 to consider two records to be a match. Shockingly, this slight increase in match

23The bigram score is calculated as the ratio of common two consecutive letter pairs in both the patent (or
yearbook) record and census record to their average two consecutive letter pairs in both records. I compute
this using Stata’s reclink2 command (an extension of Blasnik (2007)); see Wasi and Flaaen (2015) for more
details.
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strictness reduces the share of patents attributed to alumni and faculty by more than 85%;

they now account for only about 1.6% of patents. I am still able to match a similar number

of patents to the census with this new criteria. A ratio of 0.85 is still quite liberal as a match

cutoff; for instance, Sarada, Andrews and Ziebarth (2019) use a cutoff of 0.9. The fact that

I use a relatively liberal cutoff of 0.8 in the baseline results further suggests that the baseline

results likely overstate the share of patents from alumni and faculty.

One of the concerns with using yearbook data, described in detail above in Section D, is

that the yearbook data are not available for all years. This is especially problematic when

computing the number of patents from alumni, since missing yearbooks will undercount the

stock of possible alumni inventors. To adjust for this, I create an adjusted stock of potential

alumni by interpolating student counts in missing yearbooks. In Table A25, I present results

without making this adjustment for missing yearbook years. Not surprisingly, without this

adjustment alumni and faculty account for only about 5.5% of the patents in their college

counties. Table A26 presents results when using an alternative method to interpolate student

and faculty counts for missing yearbook years. In Table A26, I use cubic splines to interpolate

counts, whereas for the baseline results in Table 5 I use a linear interpolation. Results are

similar in both tables.

Finally, I conduct additional analysis to test the robustness of the conclusion that “post-

college others” account for more than twice the share of patents as do the “pre-college others.”

In the baseline results, I consider a patentee to be present in the college county at the time

the college was established if, as proposed by Ferrie (1996), an individual with a similar

name appears in the census prior to the college establishment and the earlier record has the

same race, gender, birthplace, and an appropriate age. In Table A27, I instead consider a
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patentee to be present in the college county at the time the college was established if a record

with a similar name is present. Not surprisingly, this relaxed matching criteria results in a

much larger share of “pre-college others,” since any patentee with a common name is likely

to appear in multiple censuses; now “pre-college others” account for 69% of patents, while

“post-college others” account for 19%.

As described in detail in Section D.B above, an individual is considered to be a “pre-

college other” if the individual is not an alumnus or faculty and was present in the college’s

county in the last decennial census prior to establishing the college. The problem is that

it is impossible to know when individuals migrate in between census years. For instance,

an individual who migrated to a college county in 1871 would not appear in that county

in the 1870 census, but would reside in the county prior to the college if the college was

established in 1872 or later. Thus, the decennial nature of the census records may induce

measurement error. In Table A28, I test for whether this source of bias is likely to be

quantitatively meaningful by regressing the share of “post-college others” on how many

years after the previous census each college was established.24 Column 1 shows that each

additional year further away from the census in which a college was established increases the

share of post-college others in the entire population by about 1.1 percentage points. While

each additional year is relatively small in magnitude and statistically insignificant, a college

that is established nine years later sees 9.9 percentage points more post-college others, about

12.6% of the average share of post-college others. In Column 2, I repeat this exercise but

calculate the share of post-college others among patentees. The correlation is similar in

24So, a college established in 1879 was established nine years after the 1870 census. Note that there was
no census in 1890, so for colleges established in the 1890s I calculate the number of years to the 1880 census.
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magnitude and still statistically insignificant. In Columns 3 and 4 I repeat these exercises

but use the naive name matching procedure as in Table A27. The correlation for the share

of post-college others in the entire population and among patentees is about one-third the

magnitude of the original estimate, although now one is positive and one negative; again,

neither is statistically significant. In sum, the sign of these correlations are sensitive to the

specification and are statistically insignificant. Nevertheless, in some specifications, a college

established almost a decade after the prior census may have a non-trivially larger share of

post-college others.

To further address this issue, I repeat the matching results using an alternative definition

of “pre-college” and “post-college others.” I redefine “pre-college others” to be any individual

who was located in a census in the college county through the first census after a college was

established. This is therefore an upper bound on the number of pre-college others, since it

includes some individuals who migrated to the college county in between the establishment

of the college and the next decennial census. Results are presented in Table A29. While the

share of pre-college others is a bit larger than the baseline, post-college others still account for

a plurality of population and patents (53.2% of population and 48.8% of patents, compared

to 41.2% and 39.3% of population and patents, respectively, for the pre-college others).

Thus, measurement error induced by the decennial nature of the census data is not driving

the main qualitative conclusions. This should perhaps not be surprising, since most of the

post-college others likely arrive long after the college is established.

As a final test to ensure that I am not inflating the counts of post-college others, I exclude

from the analysis any of the colleges that were established prior to 1860. For these early

colleges, there may not be any usable census data in the “pre” period, and so all non-alumni
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and non-faculty inventors will be classified as post-college others. I present the results in

Table A30. In spite of the fact that, by construction, this sample includes only younger

colleges that have had less time to grow and build up a stock of alumni, the shares for all

four groups, including the pre- and post-college others, are nearly identical to the baseline

results.

Table A23: Patents by Alumni, Faculty, and Others: Multiple Matches

Number of People Share of Population Number of Patents Share of Patents

Alumni 277.626 0.055 0.079 0.116
(526.578) (0.070) (0.246) (0.197)

Faculty 4.115 0.001 0.000 0.001
(6.375) (0.001) (0.003) (0.003)

Pre-College Others 1,151.105 0.227 0.186 0.266
(2,317.772) (0.190) (0.809) (0.327)

Post-College Others 3,640.316 0.718 0.434 0.617
(7,274.108) (0.222) (1.285) (0.354)

Notes: Population and patenting results for college alumni, faculty, and other individuals living in the same
county using fractional assignment of multiple patents. The first row lists statistics for alumni. The second
row lists statistics for faculty. The third row lists statistics for other (non-alumni, non-faculty) individuals
who were present in the college counties at the time the college was established. The fourth row lists statistics
for other individuals who were not present in the college counties at the time the college was established.
The first column lists the average number of people in each group per county. The second column lists the
share of the county’s total population belonging to each group. The third column lists the number of patents
attributable to each group. The fourth column lists the share of the county’s total patents attributable to
each group. Results are for college counties for which yearbook data is available. Standard deviations are
shown in parentheses.

F.B Alumni and Faculty Patents in Counties with Only One Col-

lege

If establishing a college spurs follow-up investment, including the creation of future colleges,

then simply counting how many patents come from the alumni and faculty of an experiment

college may be understating the direct effects of colleges. That is, alumni and faculty of
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Table A24: Patents by Alumni, Faculty, and Others: Strict Matching Criteria

Number of People Share of Population Number of Patents Share of Patents

Alumni 277.183 0.055 0.011 0.016
(525.497) (0.070) (0.059) (0.046)

Faculty 4.115 0.001 0.000 0.000
(6.375) (0.001) (0.000) (0.000)

Pre-College Others 1,151.268 0.227 0.197 0.296
(2,318.205) (0.190) (0.847) (0.359)

Post-College Others 3,640.496 0.718 0.460 0.689
(7,274.211) (0.222) (1.342) (0.350)

Notes: Population and patenting results for college alumni, faculty, and other individuals living in the same
county when using strict matching criteria. The first row lists statistics for alumni. The second row lists
statistics for faculty. The third row lists statistics for other (non-alumni, non-faculty) individuals who were
present in the college counties at the time the college was established. The fourth row lists statistics for
other individuals who were not present in the college counties at the time the college was established. The
first column lists the average number of people in each group per county. The second column lists the share
of the county’s total population belonging to each group. The third column lists the number of patents
attributable to each group. The fourth column lists the share of the county’s total patents attributable to
each group. Results are for college counties for which yearbook data is available. Standard deviations are
shown in parentheses.

Table A25: Patents by Alumni, Faculty, and Others: No Adjustment for Missing Yearbooks

Number of People Share of Population Number of Patents Share of Patents

Alumni 48.392 0.010 0.037 0.053
(140.987) (0.033) (0.243) (0.178)

Faculty 1.512 0.000 0.001 0.002
(5.330) (0.001) (0.036) (0.030)

Pre-College Others 1,232.474 0.243 0.198 0.281
(2,517.697) (0.207) (0.848) (0.345)

Post-College Others 3,790.784 0.747 0.469 0.665
(7,412.226) (0.213) (1.368) (0.373)

Notes: Population and patenting results for college alumni, faculty, and other individuals living in the same
county without making any correction for missing yearbook years. The first row lists statistics for alumni.
The second row lists statistics for faculty. The third row lists statistics for other (non-alumni, non-faculty)
individuals who were present in the college counties at the time the college was established. The fourth
row lists statistics for other individuals who were not present in the college counties at the time the college
was established. The first column lists the average number of people in each group per county. The second
column lists the share of the county’s total population belonging to each group. The third column lists the
number of patents attributable to each group. The fourth column lists the share of the county’s total patents
attributable to each group. Results are for college counties for which yearbook data is available. Standard
deviations are shown in parentheses.
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Table A26: Patents by Alumni, Faculty, and Others: Alternative Between-Yearbook Interpolation

Number of People Share of Population Number of Patents Share of Patents

Alumni 282.680 0.056 0.080 0.118
(525.982) (0.069) (0.247) (0.197)

Faculty 7.787 0.002 0.001 0.001
(7.930) (0.004) (0.006) (0.007)

Pre-College Others 1,149.591 0.227 0.185 0.265
(2,318.619) (0.189) (0.808) (0.326)

Post-College Others 3,633.103 0.716 0.433 0.616
(7,273.377) (0.221) (1.285) (0.353)

Notes: Population and patenting results for college alumni, faculty, and other individuals living in the same
county when using a cubic spline to interpolate the number of students and faculty in missing yearbook
years. The first row lists statistics for alumni. The second row lists statistics for faculty. The third row lists
statistics for other (non-alumni, non-faculty) individuals who were present in the college counties at the time
the college was established. The fourth row lists statistics for other individuals who were not present in the
college counties at the time the college was established. The first column lists the average number of people
in each group per county. The second column lists the share of the county’s total population belonging to
each group. The third column lists the number of patents attributable to each group. The fourth column
lists the share of the county’s total patents attributable to each group. Results are for college counties for
which yearbook data is available. Standard deviations are shown in parentheses.

Table A27: Patents by Alumni, Faculty, and Others: Naive Matching Criteria

Number of People Share of Population Number of Patents Share of Patents

Alumni 277.626 0.055 0.080 0.118
(526.578) (0.070) (0.247) (0.197)

Faculty 4.115 0.001 0.001 0.001
(6.375) (0.001) (0.006) (0.007)

Pre-College Others 3,382.254 0.667 0.487 0.694
(6,211.392) (0.285) (1.557) (0.353)

Post-College Others 1,409.167 0.278 0.131 0.186
(3,216.698) (0.297) (0.604) (0.337)

Notes: Population and patenting results for college alumni, faculty, and other individuals living in the same
county when using only first and last names to match individuals across censuses. The first row lists statistics
for alumni. The second row lists statistics for faculty. The third row lists statistics for other (non-alumni,
non-faculty) individuals who were present in the college counties at the time the college was established. The
fourth row lists statistics for other individuals who were not present in the college counties at the time the
college was established. The first column lists the average number of people in each group per county. The
second column lists the share of the county’s total population belonging to each group. The third column
lists the number of patents attributable to each group. The fourth column lists the share of the county’s
total patents attributable to each group. Results are for college counties for which yearbook data is available.
Standard deviations are shown in parentheses.
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Table A28: Correlation between Share of Post-College Others and Years to the Prior Census

Share Post-College Share Post-College Patents Share Post-College Share Post-College Patents

Years to Census 0.011 0.012 0.003 -0.004
(0.012) (0.023) (0.022) (0.026)

Experiment FE No No No No
Year FE No No No No

Year Range 1839-1924 1839-1924 1839-1924 1839-1924
# Experiments 20 20 20 20

Mean of Dep. Var. 0.782 0.778 0.298 0.234
Adjusted R-Squared -0.004 -0.047 -0.057 -0.065

Notes: Correlations between the baseline share of post-college others and the number of years between the
last census prior to college establishment and the establishment of the college. The first column shows the
correlation between the share of the entire county population that is post-college others and the years to
the last census. The second column shows the correlation between the share of patentees that is post-college
others and the years to the last census. The third and fourth columns repeat Columns 1 and 2, respectively,
but use the naive matching criteria from Table A27 to determine matches. Standard errors are clustered by
county and shown in parentheses.

Table A29: Patents by Alumni, Faculty, and Others: Alternative Definition of Pre- and Post-College

Number of People Share of Population Number of Patents Share of Patents

Alumni 277.626 0.055 0.080 0.118
(526.578) (0.070) (0.247) (0.196)

Faculty 4.115 0.001 0.001 0.001
(6.375) (0.001) (0.006) (0.007)

Pre-College Others 2,090.429 0.412 0.275 0.393
(3,593.553) (0.178) (0.996) (0.369)

Post-College Others 2,700.993 0.532 0.343 0.488
(5,575.431) (0.207) (1.169) (0.377)

Notes: Population and patenting results for college alumni, faculty, and other individuals living in the same
county when using an alternative definition of pre- and post-college others in which individuals are counted
as pre-college others if they reside in the college county in the first census after the college is established. The
first row lists statistics for alumni. The second row lists statistics for faculty. The third row lists statistics for
other (non-alumni, non-faculty) individuals who were present in the college counties at the time the college
was established. The fourth row lists statistics for other individuals who were not present in the college
counties at the time the college was established. The first column lists the average number of people in
each group per county. The second column lists the share of the county’s total population belonging to each
group. The third column lists the number of patents attributable to each group. The fourth column lists
the share of the county’s total patents attributable to each group. Results are for college counties for which
yearbook data is available. Standard deviations are shown in parentheses.
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Table A30: Patents by Alumni, Faculty, and Others: Excluding the Early College Site Selection Experi-
ments

Number of People Share of Population Number of Patents Share of Patents

Alumni 291.079 0.055 0.084 0.118
(537.382) (0.070) (0.253) (0.197)

Faculty 4.336 0.001 0.001 0.001
(6.472) (0.001) (0.006) (0.007)

Pre-College Others 1,213.411 0.229 0.195 0.266
(2,363.795) (0.189) (0.829) (0.326)

Post-College Others 3,780.515 0.715 0.455 0.614
(7,442.694) (0.221) (1.315) (0.353)

Notes: Population and patenting results for college alumni, faculty, and other individuals living in the
same county when excluding any colleges established before 1860. The first row lists statistics for alumni.
The second row lists statistics for faculty. The third row lists statistics for other (non-alumni, non-faculty)
individuals who were present in the college counties at the time the college was established. The fourth
row lists statistics for other individuals who were not present in the college counties at the time the college
was established. The first column lists the average number of people in each group per county. The second
column lists the share of the county’s total population belonging to each group. The third column lists the
number of patents attributable to each group. The fourth column lists the share of the county’s total patents
attributable to each group. Results are for college counties for which yearbook data is available. Standard
deviations are shown in parentheses.

other local colleges could be contributing a large number of local patents.

To check for this, I repeat the results in Table 5 but exclude any counties that had an

additional local college as of 1940. I compile a list of all currently operating non-experiment

colleges in the yearbook college counties from the IPEDS data. Then, I manually look up

the establishment date for each of these colleges and exclude any yearbook college counties

that had another college established in 1940 or earlier. When excluding these colleges,

the remaining yearbook colleges are: Auburn University, Iowa State University, Missouri

University of Science and Technology, North Dakota State University, Texas Tech University,

University of Arizona, University of Colorado, University of Nevada, University of New

Hampshire, University of North Dakota, Utah State University, Virginia Tech University,

and Washington State University.
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Results are presented in Table A31. When restricting attention to these colleges, alumni

and faculty together account for about 1.5% of all patents, far smaller than the 11.9% when

using all of the yearbook colleges. Thus, it does not appear that missing patents from

alumni and faculty of non-experiment local colleges are resulting in a substantial undercount

of patents from alumni and faculty.

Table A31: Patents by Alumni, Faculty, and Others: No Counties with Multiple Colleges

Number of People Share of Population Number of Patents Share of Patents

Alumni 92.365 0.044 0.002 0.015
(135.952) (0.075) (0.016) (0.094)

Faculty 2.597 0.001 0.000 0.000
(2.916) (0.002) (0.000) (0.000)

Pre-College Others 303.256 0.143 0.048 0.200
(489.401) (0.171) (0.378) (0.382)

Post-College Others 1,715.185 0.812 0.190 0.786
(1,961.039) (0.181) (0.727) (0.387)

Notes: Population and patenting results for college alumni, faculty, and other individuals living in the same
county, excluding all cases in which the college county had another local college established in 1940 or
earlier. The first row lists statistics for alumni. The second row lists statistics for faculty. The third row lists
statistics for other (non-alumni, non-faculty) individuals who were present in the college counties at the time
the college was established. The fourth row lists statistics for other individuals who were not present in the
college counties at the time the college was established. The first column lists the average number of people
in each group per county. The second column lists the share of the county’s total population belonging to
each group. The third column lists the number of patents attributable to each group. The fourth column
lists the share of the county’s total patents attributable to each group. Results are for college counties for
which yearbook data is available. Standard deviations are shown in parentheses.

F.C The Role of Alumni and Faculty Today

In this section, I expand on the discussion in Section III.A, in which I argue that the con-

clusions about the role of alumni and faculty in local invention from the pre-1940 period

still hold in the present. In particular, I explain the data construction and present results

in detail. A challenge with the college yearbook data used in Section III is that it is only

possible to match these to the decennial population censuses up to 1940. To check if the
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role of alumni and faculty in local invention is similar in recent years, one must construct

proxies or find alternative ways of measuring the contribution of these groups.

F.C.1 Alumni Patenting

To construct measures of alumni patenting in post-1940 years, I use recent work by Bell

et al. (2019), who link patents to both IRS tax records and to alumni records used in Chetty

et al. (2017). They provide data on the number of patents invented by college alumni for

cohorts born from 1980-1984 and who attended college when they were 19-22 years old.25

To make the Bell et al. (2019) data consistent with the results from the college yearbooks, I

restrict attention to only the colleges for which yearbook data is available.

As when using the yearbook data, the Bell et al. (2019) data provide the number of

patents belonging to a subset of individuals who obtained their degrees in particular years.

Instead, I am interested in the share of patents over a set of years for which all alumni are the

inventors. To convert these data to the measure of interest, I divide the number of alumni

patents granted in each year by the number of alumni that had graduated by that year to

find the alumni patenting rate. I then use the IPEDS data to construct the stock of alumni

in each college in each year.26 Finally, I multiply the stock of alumni in each year by the

alumni patenting rate to get the total number of alumni patents in each year. These steps

are identical to those described in Section III and Appendix D.A for the historical yearbook

data.

One important difference between these alumni patenting counts and the pre-1940 counts

25See https://opportunityinsights.org/wp-content/uploads/2018/04/

Inventors-Codebook-Table-3.pdf for details on the construction of the alumni patenting data.
26See https://nces.ed.gov/ipeds/.
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of alumni patenting using the yearbook data in Section III is that these include patents by

all alumni, regardless of where they live. In contrast, the results in Section III only show

patenting by alumni in the counties of their alma maters. To adjust these results to reflect

the degree of alumni geographic mobility, I use the results from Zolas et al. (2015), who

find that 87.3% of college graduates are living more than 50 miles from where they obtained

their degree. I therefore scale the number of alumni by 0.127, treating this as a rough proxy

for the share of alumni who live in a county different from that of their alma mater. Of

course, naively applying the Zolas et al. (2015) “headline” mobility number has a number of

drawbacks. First, it is an average over all colleges. Second, even within a college, the most

talented and inventive alumni may also be the most mobile, or conversely, the most likely to

remain in place to take advantage of their college’s resources. While the magnitude, or even

the sign, of this bias is unclear, scaling the number of alumni by 0.127 is likely acceptable

for the rough back-of-the-envelope nature of this calculation.27

With all these adjustments in mind, the alumni account for about 13.1% of all patents

in the counties of their alma maters from 1996-2014. This is only slightly larger than the

pre-1940 share in Table 5. Even under liberal alternative assumptions, alumni still account

for less than a quarter of all patents in college counties, and likely much less.

F.C.2 University-Assigned Patents

A natural substitute for faculty names from the yearbooks is to examine patents that are

assigned to a particular college or university; in fact, this is the measure used in the sizable

27I also calculate results when scaling the number of alumni patents by 0.22, which is the share of alumni
living in the same state as their college according to Zolas et al. (2015). This should be thought of as an
upper bound on the share of alumni remaining in the county of their alma mater. Under this alternative
assumption, alumni still account for only 23% of all patents in the college county.
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literature on university patenting (e.g., Mowery and Sampat (2001), Mowery and Ziedonis

(2002), Sampat (2006)). Note that these two measures are not perfect substitutes. Linking

patents to the names of faculty members included in the college yearbooks will capture all

inventions by faculty members, even if they were not conducted using university resources

or were conducted in a time period when a university did not require its staff to assign

all inventions to the college. University-assigned patents, on the other hand, will capture

all patents invented by individuals as part of their work for the university, even if these

individuals were not faculty and would be unlikely to be listed in a college yearbook. Note

that university-assigned patents may also include some patents by alumni if the alumni

worked on their invention while they were students or assigned their patents to their alma

maters for any reason.

To create a list of university-assigned patents, for every patent granted in a college

county, I check the assignee name for the words “College,” “University,” “Institute,” or any

of their common abbreviations. Note that this will capture all university-assigned patents

in a county, and not just the patents assigned to colleges in my sample. So, for example, I

include patents assigned to both Georgia Institute of Technology and Emory University in

Fulton County, GA. This is done to minimize the risk of omitting a sample college’s patents

because of alternative ways in which the college name is written on a patent (for instance,

the assignee may be the name of the university but may also include the name of a particular

school or department within the university, may be assigned to the entire university system

rather than a particular campus, etc.). But this decision likely overstates the number of

patents belonging to faculty members of a particular college.

Results are presented in Figure A8. To make these results as comparable as possible to
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the results on faculty patenting in Section III, I present these results only for the college

experiments for which yearbook data is available, although the results are similar for the

sample of all colleges. The number of university-assigned patents, presented in Panel (a), has

been increasing in recent decades. As a sanity check, I confirm that college counties received

essentially zero university-assigned patents in the years before the college was established.

Consistent with Sampat (2006), university-assigned patents began to rise in absolute terms in

the decades before the passage of the Bayh-Dole Act in 1980 and have continued to increase

in recent years, while university patenting was exceptionally rare before 1940; results by

calendar year, rather than year since the college was established, are available upon request.

While the number of university-assigned patents is growing rapidly in recent decades, the

number of overall patents in college counties is growing nearly as quickly, so that the share

of university-assigned patents grows only modestly; with the exception of a few outlier years,

university patents never account for more than 20% of all patents in college counties in any

given year, and on average from 1996 to 2014 they account for only 4.5% of patents in college

counties.
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Figure A8: University-Assigned Patents
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Notes: The x-axis shows the number of years since the college experiment. The year of the establishment
of the new college is normalized to 0. Everything left of 0 shows pre-college results; everything to the
right shows post-college results. In Panel (a), the y-axis shows the number of patents that list a college or
university as an assignee in a college county. In Panel (b), the y-axis shows the share of total patents in the
college counties that list a college or university as an assignee. Data are for college experiments for which
yearbooks are available.

G Additional Results Investigating the Indirect Chan-

nels

G.A Most Common Inventor Occupations by Decade

Table A32 lists the top ten occupations for inventors, along with the share of inventors in

each occupation, for the census years 1900-1940. Most common occupations are based on all

inventors in the U.S. (not just inventors in college and runner-up counties) matched to the

decennial population censuses in Sarada, Andrews and Ziebarth (2019). I use the variable

“occ1950” to get consistent occupation names across censuses.

These results reflect the democratization of invention (Khan, 2005) in the early years with

the prevalence of skilled craftsmen (e.g., machinists, carpenters, painters) and the increasing

specialization, professionalization, and technical skills needed to invent as exemplified by the
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growing role of engineers and managers.28

Table A32: Most Common Inventor Occupations by Year

1900 1910 1920 1930 1940
Occ. Share Occ. Share Occ. Share Occ. Share Occ. Share

1 CLERK 25.4 MANUFACTURER 11.7 CLERK 32.5 ENGINEER 26.8 SALESMAN 13.9
2 LABORER 9.59 LABORER 10.8 MANUFACTURER 8.52 MANAGER 8.64 MANAGER 12.2
3 MERCHANT 7.05 SALESMAN 6.80 LABORER 6.03 LABORER 6.88 OPERATOR 7.76
4 SHOEMAKER 4.75 OPERATOR 6.46 SALESMAN 5 SALESMAN 6.59 LABORER 7.15
5 MACHINIST 3.44 DRIVER 5.26 OPERATOR 4.90 CLERK 4.51 CLERK 5.28
6 DRIVER 3.42 CARPENTER 4.01 MACHINIST 3.49 OPERATOR 4.34 DRIVER 4.34
7 CARPENTER 2.88 CLERK 3.90 DRIVER 3.16 DRIVER 3.30 MECHANICAL ENGINEER 2.16
8 PAINTER 1.63 MACHINIST 3.64 CARPENTER 2.46 CARPENTER 2.14 MECHANIC 1.99
9 STUDENT 1.63 ENGINEER 2.52 ENGINEER 1.42 MACHINIST 1.86 PAINTER 1.86
10 ENGINEER 1.33 PAINTER 2.08 FOREMAN 1.33 PAINTER 1.78 CARPENTER 1.60

Notes: The ten most common occupation codes for patentees matched to the 1900, 1910, 1920, 1930, and
1940 decennial population censuses from Sarada, Andrews and Ziebarth (2019), along with the percentage
of inventors belonging to each occupation code in each year.

G.B Consolation Prizes

G.B.1 Additional Details on the Consolation Prizes

In this section, I present additional details on the consolation prize counties. First, I supple-

ment the results in Figures 6 and 7 by showing that not only were college counties similar

to their consolation prize counties in the last census before the colleges were established,

but they were evolving similarly as well. Results are presented in Figure A9, showing the

evolution of logged population, the fraction of the population living in urban areas, logged

farm product, and logged manufacturing output. This figure is constructed similarly to

Figure A3.

Next, I provide additional information on the consolation prize sites. While Figures 6

and 7 show that the counties that received consolation prizes were similar to the college

28The disappearance of “Engineers” (with an “occ1950” code of 16) in 1940 but the appearance of “Me-
chanical Engineer” (“occ1950” code of 460) suggests increasing specialization among a particularly important
high-skilled occupation (Maloney and Caicedo, 2017). See https://usa.ipums.org/usa/volii/occ_ind.

shtml for more information on the construction of occupation codes.
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counties in the year before the colleges and consolation prizes were established, it is possi-

ble that the surrounding areas may have been different between the college and consolation

prize counties. In particular, one might wonder if the fact that consolation prize counties

patent similarly to the college counties even after the college is established—which I high-

light in Table 8—is driven by the fact that consolation prizes happen to be built close to

large population centers or other non-consolation prize-related features that could plausibly

explain their patenting, while colleges are built in more remote locations. The nature of

the college site selection experiments ensures that, on average, college and runner-up sites

should be in places with similar characteristics, including similar remoteness and distance to

major cities. But since there is only a small number of consolation prize cases, it is possible

that the consolation prize counties are substantially less remote than their college county

counterparts.

I present information on the location of the consolation prizes in Table A33. For each

consolation prize, I list the distance to the nearest “major” city, as well as the distance be-

tween the consolation prize and that major city in miles and the current drive time according

to Google Maps (calculated at a time with minimal traffic).29 The college and consolation

prizes are typically similarly remote. Furthermore, in most cases, the consolation prize coun-

ties are quite distant from any major cities, more than an hour’s drive in most cases and

more than two hours in five of the 13 cases. As travel times have trended downward through

history, the time to reach a major city from these consolation prize locations would have

29The decision of what counts as a major city was somewhat subjective. I do not count any of the college
or consolation prize counties as sites of major cities. For instance, the closest major city to Stutsman or
Burleigh Counties in North Dakota would be Fargo, the site of North Dakota State University, or Grand
Forks, the site of the University of North Dakota. Bismarck, ND, is the site of the consolation prize, the
state capital, and currently the second largest city in North Dakota. I instead consider the nearest major
city for Stutsman and Burleigh Counties to be Minneapolis, MN.
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been longer than the listed times for most of the sample period.

There are three exceptions in which the consolation prize is less than 50 miles from a

major city: Weber County, UT, is 43 miles from Salt Lake City; Canon City in Fremont

County, CO, is 45 miles from Colorado Springs; and Salem in Marion County, OR, is 46

miles from Portland. While none of these is among the largest cities in the country, all

three are substantially larger than the college county. While Salt Lake City is today a

major innovation hub, this is a relatively recent development (Vara, 2015), so it is not clear

that proximity to the city would have been a major boon to Weber County for most of

its existence. Colorado Springs likewise did not become an important hub until the Air

Force Academy located there in 1954 (Fagan, 2006; Nauman, 2004). Moreover Canon City

is further from Colorado Springs than Boulder (the site of the University of Colorado) is

from Denver, the largest city in the state; if anything Boulder’s relative proximity to Denver

might be expected to overstate the effect of the college relative to the consolation prize.

Portland, OR, on the other hand, was among the 50 largest cities in the U.S. for most of

the years after Oregon State was established, raising the possibility that Portland’s success

explains the high levels of patenting at the state capital in Salem relative to Corvallis, the

site of Oregon State University. Given that all three cities are more than 40 miles from the

consolation prize sites, I find this explanation unlikely, especially in years before widespread

suburbanization. In Section G.B.3 below, I show that college and consolation prize counties

still patent similarly even when excluding these three cases, as well as when excluding recent

decades during which suburbanization may have linked labor markets in consolation prize

counties with those of major cities.

Table A34 lists contemporary outcomes for the college and consolation prize counties.
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Column 1 lists the college, Column 2 the county and state, Column 3 the type of county

(either a college or consolation prize), Column 4 the number of patents over the years 2000-

2010, and Column 5 the county population in the 2010 census. Consistent with Figure 7,

by 2000-2010 the college counties do tend to be a bit larger and have more patents than

the consolation prize counties, although this is not true in all cases and the magnitudes

vary substantially. For instance, the consolation prize counties for the University of South

Dakota and West Virginia University have more patents over the most recent full decade

than do their college counties, while the consolation prize counties for the University of

Kansas, University of North Dakota, Oregon State University, University of South Dakota,

Utah State University, West Virginia University, and University of Wyoming all have larger

populations than their college counties today.

Table A33: Additional Details on Consolation Prize Locations

College State County Town Closest City Distance to City Drive Time to City

1 Cornell University New York Seneca Ovid Rochester, NY 63.1 miles 68 minutes
2 University of Kansas Kansas Shawnee Topeka Kansas City, MO 63.3 miles 59 minutes
3 North Dakota State University North Dakota Stutsman Jamestown Minneapolis, MN 328 miles 296 minutes
4 Oregon State University Oregon Marion Salem Portland, OR 46.4 miles 48 minutes
5 University of Colorado Colorado Fremont Canon City Colorado Springs, CO 44.9 miles 51 minutes
6 University of North Dakota North Dakota Burleigh Bismarck Minneapolis, MN 427 miles 381 minutes
7 University of New Mexico New Mexico San Miguel Las Vegas Santa Fe, NM 67.2 miles 66 minutes
8 University of South Dakota South Dakota Yankton Yankton Omaha, NE 159 miles 147 minutes
9 University of South Dakota South Dakota Bon Homme Bon Homme Omaha, NE 187 miles 179 minutes
10 University of Wyoming Wyoming Uinta Evanston Salt Lake City, UT 83.4 miles 82 minutes
11 University of Wyoming Wyoming Laramie Cheyenne Denver, CO 101 miles 93 minutes
12 Utah State University Utah Weber . Salt Lake City, UT 42.7 miles 43 minutes
13 West Virginia University West Virginia Kanawha Charleston Columbus, OH 162 miles 162 minutes

Notes: Details about each of the consolation prize locations. The first column lists the college, the second
column the consolation prize’s state, the third column the consolation prize’s county, the fourth column the
consolation prize’s town, the fifth column the closest major city to the consolation prize, the sixth column the
distance in miles to the major city, and the seventh column the current driving distance from the consolation
prize to the major city.

85



Figure A9: Time Series for Demographic and Economic Variables for Consolation Prizes
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Notes: Time series for various demographic and economic variables in each census year. The year of the
college experiment is normalized to year 0. Everything left of year 0 shows pre-college means; everything to
the right shows post-college means. The college counties are represented by the solid line. The consolation
prize counties are represented by the dashed line. In each panel, the y-axis is a demographic or economic
variable. Data are for the subset of colleges for which a runner-up county received a consolation prize.
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Table A34: Consolation Prize Counties: Contemporary Outcomes

College County Type 2000-2010 Patents 2010 Population

1 University of Colorado Boulder, Colorado College 4941 290177
2 University of Colorado Fremont, Colorado Consolation Prize 7 46941
3 University of Kansas Douglas, Kansas College 257 109052
4 University of Kansas Shawnee, Kansas Consolation Prize 64 175537
5 New Mexico State University Donaana, New Mexico College 127 201670
6 New Mexico State University San Miguel, New Mexico Consolation Prize 13 29321
7 Cornell University Tompkins, New York College 177 100612
8 Cornell University Seneca, New York Consolation Prize 12 35309
9 North Dakota State University Cass, North Dakota College 182 144410
10 North Dakota State University Stutsman, North Dakota Consolation Prize 50 20984
11 University of North Dakota Grandforks, North Dakota College 73 66771
12 University of North Dakota Burleigh, North Dakota Consolation Prize 43 78776
13 Oregon State University Benton, Oregon College 586 84158
14 Oregon State University Marion, Oregon Consolation Prize 366 309894
15 University of South Dakota Clay, South Dakota College 12 13816
16 University of South Dakota Yankton, South Dakota Consolation Prize 25 22216
17 University of South Dakota Bon Homme, South Dakota Consolation Prize 1 7080
18 Utah State University Cache, Utah College 531 107078
19 Utah State University Weber, Utah Consolation Prize 121 222849
20 West Virginia University Monongalia, West Virginia College 52 92715
21 West Virginia University Kanawha, West Virginia Consolation Prize 205 192770
22 University of Wyoming Albany, Wyoming College 95 34926
23 University of Wyoming Uinta, Wyoming Consolation Prize 4 20537
24 University of Wyoming Laramie, Wyoming Consolation Prize 41 89221

Notes: Details about the college and consolation prize counties in modern years. The first column lists the
college, the second column the county and state, the third column the type of county (either a college or
consolation prize), the fourth column the number of patents over the years 2000-2010, and the fifth column
the county population in the 2010 census.
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G.B.2 Details on the Potential Consolation Prize Cases

In Table A35, I list each of the potential consolation prize experiments. These are cases

in which a state established a college with the goal of serving the entire state. While in

each of these experiments the state could have also decided to establish a consolation prize

institution at the same time in a different location, it did not do so (to the best of my

knowledge based on the narrative historical record) in any of these experiments.

Figure A10 replicates Figure A9 but uses the potential consolation prizes and their

runner-up counties instead of the actual consolation prize counties. The potential conso-

lation prize college counties were also evolving similarly to their runner-up counties in the

years prior to establishing a college. I once again omit confidence intervals for readabil-

ity; the potential consolation prize college counties are not statistically different from their

runner-up counties in the years prior to establishing the college.

G.B.3 Additional Consolation Prize Results

In this section, I present additional results related to the consolation prize cases. First, I plot

patenting and population in the college counties relative to the consolation prizes, broken up

by the three types of consolation prizes. Figure A11 replicates Panel (a) of Figure 7, except

each panel in Figure A11 shows results for a different type of consolation prize. Panel (a) plots

patenting in the college and consolation prize counties for the cases in which the consolation

prize is a state capital, Panel (b) plots results for the cases in which the consolation prize

is an asylum, and Panel (c) plots results for the cases in which the consolation prize is a

penitentiary. Figure A12 is similar except that it plots population rather than patenting,
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Table A35: List of Potential Consolation Prizes

College State College County

1 Auburn University Alabama Lee
2 Arkansas Tech University Arkansas Sebastian
3 University of Arkansas Arkansas Washington
4 University of California Berkeley California Contracost
5 University of California Davis California Solano
6 University of Florida Florida Columbia
7 Georgia Institute of Technology Georgia Greene
8 University of Idaho Idaho Bonneville
9 University of Illinois Illinois Champaign
10 Purdue University Indiana Tippecanoe
11 Iowa State University Iowa Marshall
12 Louisiana State University Louisiana Eastbatonr
13 University of Maine Maine Sagadahoc
14 University of Mississippi Mississippi Winston
15 Missouri University of Science and Technology Missouri Iron
16 University of Missouri Missouri Cole
17 University of Nevada Nevada Carsoncity
18 University of New Hampshire New Hampshire Strafford
19 East Carolina University North Carolina Edgecombe
20 North Carolina State University North Carolina Wake
21 University of Oregon Oregon Lane
22 Pennsylvania State University Pennsylvania Centre
23 Clemson University South Carolina Richland
24 University of Tennessee Tennessee Knox
25 Texas A and M University Texas Austin
26 Texas Tech Texas Nolan
27 University of Texas Austin Texas Travis
28 Virginia Polytechnic Institute Virginia Rockbridge
29 Washington State University Washington Whitman
30 University of Wisconsin Wisconsin Dane

Notes: The “potential consolation prize colleges” consisting of any land grant, technical, or other public
college that was established and designed to serve the needs of the entire state but in which no runner-up
county received a consolation prize. The first column lists the college, the second column the college’s state,
and the third column the college’s county.
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Figure A10: Time Series for Demographic and Economic Variables for Potential Consolation Prizes
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Notes: Time series for various demographic and economic variables in each census year. The year of the
college experiment is normalized to year 0. Everything left of year 0 shows pre-college means; everything to
the right shows post-college means. The college counties are represented by the solid line. The runner-up
counties are represented by the dashed line. In each panel, the y-axis is a demographic or economic variable.
Data are for the “potential consolation prize colleges” consisting of any land grant, technical, or other public
college was established and designed to serve the needs of the entire state but in which no runner-up county
received a consolation prize.
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replicating Panel (b) of Figure 7.

Figure A13 plots dynamic difference-in-difference results for all consolation prizes, for the

potential consolation prizes, and for the three types of consolation prizes separately, replicat-

ing Figure 4 with the consolation prize sample.30 Consistent with the results in Table 8 and

Figures 7 and A11, panel (a) shows that when considering all consolation prize experiments,

the college counties are only significantly different from the consolation prize counties in the

most recent decade, 12 decades after the college was established; in most decades the dif-

ference is small in magnitude or even negative. When considering the potential consolation

prize experiments instead in panel (b), colleges have statistically significantly more patents

than the potential consolation prizes after seven decades have passed, and the estimates

continue to be individually statistically significant for every decade thereafter. Similar to

panel (a), magnitudes are also typically small—and standard errors understandably even

larger—when considering the state capital, asylums, or prison consolation prizes separately

in panels (c)-(e), respectively.

I next show how establishing a college increases population in the college counties relative

to the consolation prize counties, replicating the results in Column 1 of Table 4 using the

samples of colleges from each column of Table 8. Results are presented in Table A36. As

expected, while the college counties have a large increase in logged population relative to

the potential consolation pries (Column 1), college counties show a smaller and statistically

insignificant increase in logged population relative to the consolation prizes (Column 2). The

coefficient when comparing colleges to state capitals is close to zero (Column 3) and is larger

30Similar dynamic results where population or patenting per capita are the dependent variables, analogous
to Figure 5, are available upon request.
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when comparing colleges to asylums (Column 4) or penitentiaries (Column 5), although all

three are smaller than the coefficient in Column 1 and are statistically insignificant.

Figures 7 and A11-A13 confirm the conclusion in Section IV.B that establishing a college

increases local patenting at best only modestly compared to counties that receive a conso-

lation prize. In spite of this, Table A34 reveals that, in many cases, college counties have

many more patents over the period 2000-2010 than do their respective consolation prizes. As

suggested by both Figure 7 and panel (a) of Figure A13, the difference between college and

consolation prizes widened substantially just in the past decade. Is it misleading to claim

that colleges have a modest effect relative to consolation prizes given the large observed

contemporary differences? To explore this issue more explicitly, in Columns 1 and 2 of Ta-

ble A37 I estimate what is essentially a long-differences specification. I estimate the baseline

specification using only observations from the decade prior to the establishment of each col-

lege and from 2000-2010. In Column 1, I include only the consolation prize experiments.

The estimated coefficient is 143.5 log points, or about 320% more patents in college counties

today relative to their consolation prizes. At face value, this magnitude is large, and in fact

is larger than the baseline estimate from all experiments in Table 2 and more than ten times

the magnitude of the baseline difference-in-difference result for the consolation prize sample

in Column 2 of Table 8. Columns 2 of Table A37 puts this magnitude into perspective, how-

ever. When examining the potential consolation prize sample in Column 2, the estimated

coefficient is a strongly statistically significant 189.7 log points, or about 566.5%, which is

1.8 times as large as the percentage increase for the consolation prize sample. Hence, for

both subsamples of colleges the estimated magnitude is much larger in the long differences

specification than it is in the baseline difference-in-difference (consistent with colleges play-
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ing a larger role in innovation today as suggested in Section III.A and F.C), but even today

the magnitude for the consolation prize colleges is substantially less than that of comparable

non-consolation prize colleges. Moreover, this effect becomes noticeable for the consolation

prize colleges only in very recent decades, more than a century after the colleges were initially

established and much later than the non-consolation prize samples. To further underscore

this point, Columns 3 and 4 of Table A37 repeat this long-difference specification but use

patents from the years 1980-1990 instead of 2000-2010. In this specification, which includes

the first full decade post-Bayh-Dole Act, the estimated coefficient is a statistically insignif-

icant 0.696 log points, or about 101%, while it is a highly statistically significant 134.5 log

points, about 284%, for the potential consolation prizes. Finally, while the baseline sample

and potential consolation prize samples show nearly monotonic increases in patenting in the

college county relative to their runners-up beginning after about four decades, panel (b) of

Figures 7 and A13 show that the difference between college and consolation prizes grows and

shrinks several times over the last 120 years, raising the possibility that the sizable difference

in patenting between college and consolation prizes today is transitory.

Next, I show that the consolation prize results in Table 8 are robust to several alternative

specifications. First, I omit the three cases described in Section G.B.1 above in which the

consolation prize was located reasonably close to a major city. These occurred for Utah

State, University of Colorado, and Oregon State; in the first a consolation prize was located

about 40 miles from Salt Lake City, in the second the consolation prize was located 45 miles

from Colorado Springs, and in the third a consolation prize was located about 46 miles from

Portland. I present results omitting these three experiments from the analysis in Column 1

of Table A38. When omitting these cases, the difference between the college and consolation

93



prize counties is even smaller than in the baseline estimates, at only 17.3 log points.

Next, I build on the intuition from Figures 7 and A13 to show that the college and

consolation prize counties were particularly similar to one another for the first several decades

after establishing the college. To do this, I discard all data from 1980 or later; as noted above,

1980 saw the passage of the Bayh-Dole Act, which accelerated trends toward encouraging

colleges to patent faculty inventions. Consistent with the discussion above, without the most

recent three decades of data, the difference between the college and consolation prize counties

is close to zero in magnitude: college counties see only 2.3 log points (2.3%) more patents

per year than the consolation prize counties.

In Column 3 I exclude all college consolation prize counties for experiments in years after

the consolation prize county received a college of its own. Consolation prize counties may be

especially likely to later receive a college of their own because not only were they considered

suitable sites for a college initially, but the presence of the consolation prize drove population

growth which may have driven up local demand for a college. It is therefore necessary to

ensure that the similarity between the college and consolation prize counties are not driven

by the establishment of a college in the consolation prize counties. This exercise is similar in

spirit to that from Section E.A, although in this case the sample of consolation prize counties

is small enough that I can manually verify when each college opened in the consolation

prize counties. For instance, in Stutsman County, ND, the University of Jamestown was

established in 1883, so I drop all counties in the North Dakota State University experiment

starting in 1883. Burleigh County, ND, saw the establishment of Bismarck State College in

1939, so I drop all counties in the University of North Dakota experiment after 1939. The

full list of dates the first college was established in each consolation prize county is available
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upon request. When excluding these counties in these years, the coefficient is similar to the

baseline estimate.

In Column 4, I re-estimate the baseline consolation prize specification (Column 2 from

Table 8) while controlling for logged population. In this case, the difference between the col-

lege and consolation prize counties is still statistically insignificant and smaller in magnitude

than the baseline estimate. In Columns 5-7, I repeat Columns 3-5 from Table 8 in which I

consider cases in which the consolation prizes are state capitals, asylums, and penitentiaries,

respectively, while controlling for county population. For state capitals and penitentiaries,

the coefficients are smaller than the corresponding estimates in Table 8) and still statistically

insignificant. For asylums, however, controlling for population results in a larger estimate

that is statistically significant at the 5% level. For all four of these columns, I stress that

population is an endogenous outcome variable, and so the results must be interpreted with

caution.

Table A36: Consolation Prizes and Population

Potential Consolation State
Consolation Prizes Prizes Capitals Asylums Penitentiaries

College * PostCollege 0.633*** 0.352 0.023 0.498 0.485
(0.190) (0.242) (0.263) (0.320) (0.466)

County FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes

Year Range 1840-2010 1840-2010 1840-2010 1840-2010 1840-2010
County-Year Observations 1,620 432 270 198 162

# Counties 87 24 15 11 9
# Experiments 30 11 6 4 4

Adjusted R-Squared 0.647 0.625 0.585 0.613 0.554

Notes: Column 1 estimates the effect of establishing a college on local population for the sample of potential
consolation prize experiments. Column 2 estimates the effect of establishing a college on local population
for the sample of actual consolation prize experiments. Columns 3-5 repeat Column 2 but use only the
college experiments in which the consolation prize is a state capital, asylum, or penitentiary, respectively.
The dependent variable in all columns is log(Population). Results are for high quality experiments only.
Standard errors are clustered by county and shown in parentheses. Stars indicate statistical significance: *
p < 0.10; ** p < 0.05; *** p < 0.01
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Figure A11: Patenting in College and Consolation Prize Counties by Type of Consolation Prize

(a) State Capitals
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Notes: The x-axis shows the number of years since the college experiment. The year of the establishment
of the new college is normalized to 0. Everything left of 0 shows pre-college results; everything to the right
shows post-college results. Panel (a) uses the sample in which the consolation prize is a state capital, (b)
the sample in which the consolation prize is an asylum, (c) the sample in which the consolation prize is a
penitentiary. In all panels, the y-axis is log(Patents + 1). The college counties are represented by the solid
line, while the consolation prize counties are represented by the dashed line.
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Figure A12: Population in College and Consolation Prize Counties by Type of Consolation Prize

(a) State Capitals
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Notes: The x-axis shows the number of years since the college experiment. The year of the establishment
of the new college is normalized to 0. Everything left of 0 shows pre-college results; everything to the right
shows post-college results. Panel (a) uses the sample in which the consolation prize is a state capital, (b)
the sample in which the consolation prize is an asylum, (c) the sample in which the consolation prize is a
penitentiary. In all panels, the y-axis is log(Population). The college counties are represented by the solid
line, while the consolation prize counties are represented by the dashed line.
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Figure A13: Dynamics of the Effect of Local Colleges for the Consolation Prize Samples

(a) All Consolation Prizes
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(e) Penitentiaries
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Notes: Estimated coefficients of the shift in logged patenting in college counties with a separate interaction
term estimated for each time bin, along with 95% confidence bands. Time bins are are dummy variables
that are equal to one for college counties in every ten year period before and after the establishment of the
new college. The black diamonds show coefficients comparing the college counties to runner-up counties.
The gray triangles show coefficients comparing the college counties to the non-experimental counties. Data
are for high quality experiments only. Panel (a) uses the sample of all consolation prize experiments, (b)
the sample of all potential consolation prize experiments, (c) the sample in which the consolation prize is a
state capital, (d) the sample in which the consolation prize is an asylum, and (e) the sample in which the
consolation prize is a penitentiary.
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Table A37: Long Difference Results

2000-2010 1980-1990

Consolation Potential Consolation Potential
Prizes Consolation Prizes Prizes Consolation Prizes

College * PostCollege 1.435** 1.897*** 0.696 1.345***
(0.521) (0.371) (0.458) (0.308)

Experiment FE Yes Yes Yes Yes
Year Range 1852-2010 1836-2010 1852-1990 1836-1990

County-Year Observations 504 1,813 504 1,813
# Counties 24 87 24 87

# Experiments 11 30 11 30
Adjusted R-Squared 0.795 0.800 0.727 0.757

Notes: “Long difference” results in which data are from the ten years before each college is established
and the years 2000-2010. Column 1 estimates the long difference effect of establishing a college on local
patenting for the sample of actual consolation prize experiments. Column 2 estimates the long difference
effect of establishing a college on local patenting for the sample of potential consolation prize experiments.
Column 3 estimates the long difference effect of establishing a college on local patenting for the baseline
sample of colleges. The dependent variable in all columns is log(Patents + 1). Results are for high quality
experiments only. Standard errors are clustered by county and shown in parentheses. Stars indicate statistical
significance: * p < 0.10; ** p < 0.05; *** p < 0.01

Table A38: Additional Consolation Prize Results

No Consolation Prizes No Post-1980 No Consolation Prizes Control for Population
Near Large Cities Years that Get a College All Consolation Prizes State Capitals Asylums Penitentiaries

College * PostCollege 0.173 0.023 0.272 0.143 -0.200 0.464** 0.289
(0.219) (0.185) (0.344) (0.191) (0.144) (0.194) (0.485)

log(Population) 0.665*** 0.706*** 0.304*** 1.207***
(0.141) (0.134) (0.070) (0.351)

County FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes

Year Range 1836-2010 1836-1979 1836-2010 1840-2010 1840-2010 1840-2010 1850-2010
County-Year Observations 3,150 3,456 2,431 378 218 142 133

# Counties 18 24 24 24 14 9 9
# Experiments 8 11 11 11 6 4 4

Adjusted R-Squared 0.602 0.524 0.563 0.675 0.653 0.652 0.695

Notes: Additional results comparing college counties to runner-up counties that receive a consolation prize.
The dependent variable in all columns is log(Patents + 1). In Column 1, I omit experiments in which the
consolation prize county is established near a large city. In Column 2, I omit all years 1980 and after. In
Column 3, I exclude experiments in years after which a consolation prize county received a college of its own.
In Column 4, I compare college to consolation prize counties while controlling for logged county population. In
Columns 5-7, I present results only for the subsample of experiments in which the consolation prize is a state
capital, an asylum, or a penitentiary, respectively, while controlling for logged county population. Results
are for high quality experiments only. Standard errors are clustered by county and shown in parentheses.
Stars indicate statistical significance: * p < 0.10; ** p < 0.05; *** p < 0.01
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G.C Heterogeneity by College Type

I further break down the results of different types of colleges on patenting. In Column 1 of

Table A39, I control for logged county population, since different types of colleges may drive

migration in different ways. After controlling for population, neither coefficient is statistically

significant; the coefficient for practical colleges is close to zero in magnitude, while that for

classical colleges is -17.7 log points (-19.4%). I stress that population is affected by the

treatment, and so this specification should not be interpreted as causal.

In Column 2 I show how patenting differs between practical and classical colleges, using

an alternative classification of practical and classical than described in Section IV.C. Here,

a college is considered a practical college if it is a land grant college, technical school, or

military academy. Classical colleges are normal schools, other private and public colleges,

and HBCUs. The benefit of this classification is that it uses all of the colleges in the

sample. But because colleges like normal schools and HBCUs may differ from the land grant

colleges and other public institutions in other dimensions beyond just their curricula (for

instance, they may have fewer resources or political support), the comparison between the

two estimates is more difficult to interpret. In this specification, the estimate for practical

colleges is larger than that in Table 8 and still statistically significant, while the estimate for

classical colleges is a bit smaller and still statistically insignificant. The difference between

practical and classical colleges is still qualitatively the same when the alternative definitions

are used, however, and the two coefficients are not statistically different from one another.

I also compare differences between each of the seven types of colleges: land grants,

technical schools, military academies, normal schools, HBCUs, other public colleges, and
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other private colleges. Unfortunately, as Table 1 shows, there is only a small number of

several types of experiments and so insufficient power to identify differences. Even simply

comparing coefficients, however, paints a picture that does not conform to the naive intuition

that colleges that focus on more practical skills should cause larger increases in patenting.

For example, the largest coefficient is for military academies; while these school focus on

technical training, their graduates enter military service and leave their local counties after

graduating. Other private colleges have the next largest coefficient, even though this group

comprises small liberal arts colleges. Technical schools and and land grant colleges, which

focus on technical skills, are in the middle of the pack. These results are available upon

request.

I next compare all public schools to all private schools. This involves reclassifying colleges,

as some of the types described above may include both public and private colleges. For

instance, the HBCUs may be either public or private. Cornell University, while officially

New York’s land grant university, is a private institution. I interact dummy variables for

public or private status with the estimated college effect and display the results in Column

3. I find that public colleges have a positive and statistically significant effect on patenting,

while the effect for private colleges is larger in magnitude but not statistically different from

zero. In Column 4, I control for logged county population, since public colleges may be larger

and hence cause more population growth. Indeed, after controlling for population, the effect

of both types of colleges are smaller in magnitude, with neither individually statistically

significant. As above, population is an endogenous outcome.

In Column 5, I check how the estimated treatment effect varies by college quality. Un-

fortunately, reliable data on college quality does not exist for most of each college’s his-
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tory. Instead, I proxy lifetime college quality with the 2018 national universities rankings in

the U.S. New and World Reports (https://www.usnews.com/best-colleges/rankings/

national-universities). This is problematic because current college rankings may be due

in part to college’s past patenting performance, but the measure may still be informative if

rankings are highly persistent over time. I split colleges into four groups: those ranked 1-75,

those ranked 76-150, those ranked 151-225, and those that do not have a 2018 U.S. News

ranking. The coefficient estimates do not decline monotonically with quality: the coefficient

is largest for schools ranked 1-75, then those ranked 76-150, but the unranked schools have

a larger coefficients than those ranked 151-225; only the first two groups are individually

statistically significant and most are not statistically different from one another. It may

be the case that better colleges are larger, and it is the size of the institution that drives

patenting rather than measures of quality. To try and account for this, in Column 6 I control

for logged county population. The coefficients one again do not decline monotonically, the

coefficients are all smaller in magnitude and only the top ranked schools have a coefficient

that is statistically significant at conventional levels. In sum, conclusions about the effect of

college quality on local patenting are sensitive to the specification.

G.D Other Types of Heterogeneity

In this section, I examine the heterogeneity of the results along a number of additional,

non-college related dimensions. In particular, I investigate whether the estimated effect

of establishing a college on local invention systematically varies with preexisting county

conditions.
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Table A39: Additional Results by College Type

Control for Alternative Public Public College College
Population Practical vs. Classical vs. Private vs. Private Rank Rank

Practical College Interaction 0.033 0.600***
(0.168) (0.154)

Classical College Interaction -0.177 0.339
(0.216) (0.266)

log(Total Population) 0.870*** 0.864*** 0.865***
(0.067) (0.066) (0.063)

All Public Colleges 0.451*** 0.027
(0.153) (0.109)

All Private Colleges 1.289 0.514
(0.860) (0.321)

Rank 1-75 0.971*** 0.478***
(0.277) (0.115)

Rank 76-150 0.600*** 0.107
(0.219) (0.331)

Rank 151-225 0.069 -0.251
(0.218) (0.239)

Unranked 0.459 -0.037
(0.310) (0.138)

County FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

Year Range 1836-2010 1836-2010 1836-2010 1836-2010 1836-2010 1836-2010
County-Year Observations 30,919 33,425 33,425 30,919 33,425 30,919

# Counties 174 174 174 174 174 174
# Experiments 63 63 63 63 63 63

Adjusted R-Squared 0.730 0.611 0.611 0.730 0.614 0.731

Notes: Regression results by college type. The dependent variable is log(Patents + 1). In Column 1, the
effect of establishing a new college is estimated separately for practical and classical colleges while controlling
for logged county population. In Column 2, the effect of establishing a new college is estimated separately
for practical and classical colleges, using the alternate definition described in the text. In Column 3, the
coefficient is the percentage increase in patenting caused by the college interacted with whether a college is
public or private. Column 4 repeats the specification in Column 3 while also controlling for logged county
population. In Column 5, the coefficient is the percentage increase in patenting caused by the college
interacted with each college’s rank according to the 2018 U.S. News and World Report rankings. Column 6
repeats the specification in Column 5 while controlling for logged county population. Results are for high
quality experiments only. Standard errors are clustered by county and shown in parentheses. Stars indicate
statistical significance: * p < 0.10; ** p < 0.05; *** p < 0.01
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For each year, I rank each county’s position in the distribution of all U.S. counties for a

number of characteristics, Rit. For the college counties, I then create a distribution of ranks

in the last census year before each college was established, call it Rc
it∗i

, where the superscript

c denotes college counties and t∗i is the last census before college i is established. I separate

the college experiments depending on whether the college county is above the 75th percentile

or below the 25th percentile of the Rc
it∗i

distribution. The purpose of this exercise is to ensure

that counties aren’t recorded as, for instance, being in the top quartile of the population

distribution just because the college was established late, after several decades of population

growth. Instead, I determine which counties had relatively higher or lower values of each

characteristic relative to the other college counties at the time each college was established.

Then, I estimate

PatentMeasureijt =δ1Collegei ∗ PostCollegeit ∗ Above75thPcti

+ δ2Collegei ∗ PostCollegeit ∗Below25thPcti

+ Countyi + Y eart + εijt, (9)

where Above75thPctj = 1 ifRc
jt∗j
≥75th-Percentile(Rc

it∗i
) for some college j, Below25thPctj =

1 ifRc
jt∗j
<25th-Percentile(Rc

it∗i
), and the sample consists of only the cases whenAbove75thPctj =

1 or Below25thPctj = 1.

Table A40 presents results. Column 1 shows results for counties in the top and bottom

quartiles of the population distribution. The coefficient is larger for counties in the top

quartile at a statistically significant 118.5 log points more patents per year in the top quartile

of college counties relative to their runner-ups, compared to 32 log points more patents per
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year in the bottom quartile of college counties relative to their runner-ups (statistically

significant at the 10% level). Column 2 shows heterogeneity by the fraction of the county

population living in an urban area. Once again, more urbanized counties have a large and

statistically significant coefficient, while the coefficient for the least urbanized counties is

smaller in magnitude but still statistically significant. This pattern is repeated in Column 3,

when I split effects by prior county patenting: counties in the top quartile of patenting see a

111.5 log point increase in local patenting relative to their runner-up counties, while counties

in the bottom quartile of patenting see a 34.4 log point increase in patenting. Finally, Column

4 shows that the bottom quartile of counties as measured in the percentage of the county

within 15 miles of access to a railroad line sees a substantially larger increase in patenting

relative to their runners-up (176.2 log points, significant at the 1% level) than do the top

quartile of counties (61.9 log points, also statistically significant at the 1% level), although

data on railroad access is not available for all counties.

Results examining heterogeneity by preexisting manufacturing and agricultural condi-

tions are all imprecisely estimated. Results are also similar when dividing by the median

instead of examining the top and bottom quartiles, although the inclusion of colleges just

above and below the median cutoff makes the median results more difficult to interpret.

These additional results are available upon request.

In sum, while these heterogeneity results do not present an unambiguously clear picture

of when and where establishing a college will have a larger effect, they do suggest that the

effect may be likely to be larger when an area is initially more developed. Taking the above

estimates at face value, a college has the largest effect when a county is large, urbanized,

and inventive, but lacks transportation infrastructure. This conclusion is also consistent with
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the results in Section E.C, which finds that the effect of a college is larger when there is a

preexisting college in the county, although the difference is modest. Of course, these results

cannot be interpreted as causal; it may be the case that more populous counties are able to

fund larger colleges, for instance. Further exploring settings in which colleges have a larger

or smaller effect is an important avenue for future work.

Table A40: Heterogeneity by County Characteristics

By Previous
County Population Fraction Urbanized County Patents Access to Railroads

Above 75th Pct. 1.185*** 0.827*** 1.115*** 0.619***
(0.245) (0.290) (0.272) (0.032)

Below 25th Pct. 0.320* 0.452*** 0.344*** 1.762***
(0.180) (0.091) (0.087) (0.032)

County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Year Range 1836-2010 1836-2010 1836-2010 1836-2010
County-Year Observations 472,516 713,882 757,691 30,114

# Counties 1,139 1,379 1,605 195
# Experiments 30 43 51 2

Adjusted R-Squared 0.471 0.427 0.450 0.519

Notes: Regression results by preexisting county characteristics. The dependent variable is log(Patents+ 1).
In Column 1, the effect of establishing a new college is estimated separately for counties in the top and bottom
quartile of the distribution of college county populations, in Column 2 for the top and bottom quartiles by
urbanization, in Column 3 by the top and bottom quartiles of patenting in pre-college years, and in Column 4
by the top and bottom quartile of access to railways. Results are for high quality experiments only. Standard
errors are clustered by county and shown in parentheses. Stars indicate statistical significance: * p < 0.10;
** p < 0.05; *** p < 0.01
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