Market Power and Price Exposure: Learning from Changes in Renewables Regulation

N. Fabra^a and Imelda^b ^aUC3M and ^bGraduate Institute

1. Fixed prices: Feed-in-Tariffs (FiT)

- Prices set ex-ante by regulators
- Mitigate market power directly
- Discourage renewables from arbitraging

For given capacities, what are the **market power impacts** of paying producers according to **fixed vs. variable prices**?

Iberian electricity market: an ideal laboratory

Changes in wind regulation:

- \blacksquare 02/2013: variable prices (R I) \rightarrow fixed prices (R II)
- 04/2014: fixed prices (R II) \rightarrow variable prices (R III)

イロト 不得 とくき とくきとう き

6/38

Iberian electricity market: an ideal laboratory

Changes in wind regulation:

- 02/2013: variable prices (R I) \rightarrow fixed prices (R II)
- 04/2014: fixed prices (R II) \rightarrow variable prices (R III)

Market Rules:

Sequential markets: day-ahead market + intraday markets

- Arbitrage across markets allowed, with limits
 - Forward premia consistent with market power due to witholding strategy

Data from the Iberian electricity market

Sample: 2012-2015

Detailed hourly bid and cost data at the plant level

- Dominant firms and a group of smaller (fringe) firms
- High wind penetration (covering 20-23% of demand)

	Regime I Market Prices		Regi Fixed	Regime II Fixed Prices		Regime III Market Prices	
	Mean	SD	Mean	SD	Mean	SD	
Price day-ahead	50.2	(13.8)	38.1	(22.2)	52.0	(11.2)	
Price intra-day 1	48.9	(14.2)	37.2	(22.1)	51.7	(11.7)	
Price premium	1.2	(5.0)	1.0	(5.6)	0.3	(3.9)	
Marginal cost	47.5	(6.6)	42.3	(7.2)	37.0	(3.8)	
Demand forecast	29.8	(4.8)	28.5	(4.6)	28.1	(4.3)	
Wind forecast	5.7	(3.4)	6.5	(3.6)	5.0	(3.2)	
Dominant wind share	0.6	(0.0)	0.7	(0.0)	0.6	(0.0)	
Fringe wind share	0.4	(0.0)	0.3	(0.0)	0.4	(0.0)	
Installed capacity wind	22.76	· · ·	23.01	. ,	23.03	. ,	
Dominant non-wind share	0.8	(0.0)	0.8	(0.1)	0.8	(0.1)	
Fringe non-wind share	0.2	(0.0)	0.2	(0.1)	0.2	(0.1)	
Installed capacity non-wind	99.82	. ,	100.16	< • • • •	100.08	≣) ≣	

7 / 38

Market impacts of price exposure & existing studies

1 Positive effects of paying renewables at fixed prices:

- Reduce risk premia and financing costs (Newbery, 2016)
- Promote entry of smaller players
- Mitigate market power in the wholesale market (This paper)
- 2 Negative effects of paying renewables at fixed prices:
 - Value of investments not internalized (Joskow, 2011)
 - Arbitrage is discouraged (Ito and Reguant, 2016; This paper)

Contribution: how these trade-off impact market prices and efficiency.

Key message: the impact of renewable policy requires an analysis of the interaction between conventional and renewable suppliers.

Raw data suggests that price exposure matter

Figure: Overselling and withholding by wind producers

≣ •⁄ ९ ୯ 9 / 38

Evidence of the forward-contract effect day-ahead?

For given demand, more competitive bidding under fixed prices

Evidence of the forward-contract effect day-ahead?

- For given demand, more competitive bidding under fixed prices
- **2** Evidence of the arbitrage effect across markets?
 - Wind firms arbitrage under market prices, not under fixed

- **Evidence of the forward-contract effect day-ahead?**
 - For given demand, more competitive bidding under fixed prices
- **2** Evidence of the arbitrage effect across markets?
 - Wind firms arbitrage under market prices, not under fixed
- **8** Market power in the day-ahead market?
 - Which of the two channels dominate, leading to less market power in the day-ahead market?

The results preview

Under variable prices:

- Wind firms arbitrage price differences (arbitrage effect)
- This reduces market power and price discrimination

2 Under fixed prices:

- Dominant firms have less ability to exercise market power because part of their output is paid on fixed prices (forward-contract effect)
- This reduces market power and price discrimination

8 Fixed vs. variable prices:

- Which of the two effects dominate, leading to less market power in the day-ahead market?
- The comparison depends on market structure: who owns renewable energy
- In the context of the Iberian electricity market, we find:
 - Fixed prices led to less market power than variable prices

Roadmap

Empirical Analysis

- Bidding incentives in the day-ahead market
- Arbitrage across markets
- Market power in the day-ahead market

A Simple Model

- Wind receives market prices (price exposure)
- Wind receives fixed prices (no price exposure)
- Comparison

Conclusions

Empirical Analysis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

[1.] The forward contract effect

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Bidding incentives in the day-ahead market

Dominant firms do not internalize price increases on wind output under fixed prices – forward-contract effect

Bidding incentives in the day-ahead market

 Dominant firms do not internalize price increases on wind output under fixed prices – forward-contract effect

Profit maximization in day-ahead market:

$$p_1 = p_2 + \left| \frac{\partial DR_i}{\partial p} \right|^{-1} (q_i - I_t w_i),$$

where $I_t = 1$ with fixed prices and $I_t = 0$ with market prices.

Bidding incentives in the day-ahead market

 Dominant firms do not internalize price increases on wind output under fixed prices – forward-contract effect

Profit maximization in day-ahead market:

$$p_1 = p_2 + \left| \frac{\partial DR_i}{\partial p} \right|^{-1} (q_i - I_t w_i),$$

where $I_t = 1$ with fixed prices and $I_t = 0$ with market prices.

Empirical bidding equation:

$$b_{ijt} = \rho \hat{p}_{2t} + \beta \left| \frac{q_{it}}{DR'_{it}} \right| + \sum_{s=1}^{3} \theta^{s} \left| \frac{w_{it}}{DR'_{it}} \right| I_{t}^{s} + \alpha_{ij} + \gamma_{t} + \epsilon_{ijt},$$

where I_t^s is an indicator, s = RI, RII, RIII. \bigcirc Slopes Residual Demands

2SLS - Identification

- Endogeneity in the mark-ups components: we instrument DR'_{it} using wind speed and precipitation (and each of them interacted with three dummies for the pricing scheme) as residual demand shifters.
 - Conditional on unit and time fixed effects, wind speed and precipitation affect firms marginal bids only through the markup parameters (Fabra and Reguant, 2014; Ito and Reguant, 2016).
- Omitted variable bias: we add a set of flexible controls, such as time trends, and quadratic time trends, on the top of a set of fixed effects discussed earlier.

The forward contract effect

	2SLS			
	(1)	(2)	(3)	(4)
Market Prices (RI) $\times \frac{w_{it}}{DR'_{\cdot}}$	6.35	9.31	9.10	5.54
ΙΈ.	(5.03)	(6.28)	(6.10)	(5.47)
Fixed Prices (RII) $\times \frac{w_{it}}{DR'}$	-14.2***	-14.5***	-14.9***	-14.3***
- · · /t	(3.03)	(2.88)	(3.02)	(3.24)
Market Prices (RIII) $\times \frac{w_{it}}{DR'}$	1.72	0.049	0.60	5.69
- ' ''t	(4.10)	(3.42)	(3.21)	(5.24)
Expected spot price (\hat{p}_{2t})	0.77***	0.78***	0.77***	0.38***
	(0.057)	(0.062)	(0.062)	(0.15)
Markup term $\left(\frac{q_{it}}{DR'_{\cdot}}\right)$				4.81***
ιτ				(1.25)
Linear Trends	N	Y	Y	Y
Quad. Trends	N	N	Y	Y
Observations	19,805	19,805	19,805	19,805

Table: The Forward Contract Effect

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

17/38

The forward contract effect

Table: The Forward Contract Effect Accounting for Vertical Integration

	2SLS			
	(1)	(2)	(3)	(4)
Market Prices (RI) $\times \frac{w_{it}}{DR'_{i*}}$	11.9*	12.5*	12.4*	18.5**
n.	(6.45)	(6.59)	(6.41)	(8.79)
Fixed Prices (RII) $\times \frac{w_{it}}{DR'_{it}}$	-14.1***	-12.7***	-13.1***	-7.48**
It.	(3.47)	(2.83)	(2.97)	(3.48)
Market Prices (RIII) $\times \frac{w_{it}}{DR'_{2}}$	1.09	1.15	1.78	7.57*
IT	(3.91)	(3.74)	(3.43)	(4.18)
$\hat{p_{2t}}$	0.94***	0.96***	0.96***	1.18***
	(0.064)	(0.067)	(0.067)	(0.10)
$\frac{q_{it}}{DR'_{i*}}$				3.36***
n.				(0.93)
Linear Trends	Ν	Y	Y	Y
Quad. Trends	Ν	Ν	Y	Y
Observations	19,805	19,805	19,805	19,805

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへの

18/38

[2.] The arbitrage effect

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 Fringe wind firms engage in arbitrage (overselling) only under market prices – arbitrage effect

 Fringe wind firms engage in arbitrage (overselling) only under market prices – arbitrage effect

- Is overselling by the fringe a good measure of arbitrage?
 - Only if it responds to the predicted price premium $\Delta \hat{p}_t$.
 - Other reasons: demand and wind forecast errors, outages...

 Fringe wind firms engage in arbitrage (overselling) only under market prices – arbitrage effect

Is overselling by the fringe a good measure of arbitrage?

• Only if it responds to the predicted price premium $\Delta \hat{p}_t$.

- Other reasons: demand and wind forecast errors, outages...
- **2** Two alternative control groups: (g = 1, 2)
 - Independent retailers: always incentives to arbitrage
 - Other renewables under fixed prices: no arbitrage

 Fringe wind firms engage in arbitrage (overselling) only under market prices – arbitrage effect

Is overselling by the fringe a good measure of arbitrage?

• Only if it responds to the predicted price premium $\Delta \hat{p}_t$.

- Other reasons: demand and wind forecast errors, outages...
- **2** Two alternative control groups: (g = 1, 2)
 - Independent retailers: always incentives to arbitrage
 - Other renewables under fixed prices: no arbitrage

$$\Delta \ln q_{tg} = \alpha + \sum_{q=1}^{13} \theta_{gq} \Delta \hat{p}_t + \gamma D_t^{er} + \delta w_t^{er} + \rho \mathbf{X}_t + \eta_{tg}$$

Response of overselling to predicted price premium

Figure: (1) using retailers as the control group

Response of overselling to predicted price premium

Figure: (2) non-wind renewables as the control group

Notes: Other renewable units included are solar, small hydro and co-generation production units. $(\Box \rightarrow (\Box) \rightarrow (\Box$

22 / 38

Arbitrage by fringe firms: Diff-in-Diff

Two subsamples:

- d = 1: Feb 2012-Feb 2013 (includes RI \rightarrow RII)
- d = 2: Feb 2013-Feb 2014 (includes RII \rightarrow RIII)

Arbitrage by fringe firms: Diff-in-Diff

Two subsamples:

- d = 1: Feb 2012-Feb 2013 (includes RI \rightarrow RII)
- d = 2: Feb 2013-Feb 2014 (includes RII \rightarrow RIII)

Estimating equation (one for each sample; each control group):

$$\Delta \ln q_t = \alpha + \frac{\beta_1}{l_t^d} W \Delta \hat{p}_t + \beta_2 W \Delta \hat{p}_t + \beta_3 I_t^d W + \beta_4 I_t^d \Delta \hat{p}_{ht} + \beta_5 \Delta \hat{p}_t + \beta_6 W + \beta_7 I_t^d + \rho \mathbf{X}_t + \eta_t$$

- *W* = 1 treated group (Wind)
- $I_t^d = 1$ after regulatory change $(I_t^1: \text{RII}; I_t^2: \text{RIII})$
- Treatment effect captured by β₁

Table: DID estimates of overselling by the fringe

	Non-wind renewables	Suppliers	
	(1)	(2)	(3)
$\Delta \hat{p} \times \text{Wind} \times \text{Fixed Prices (RII)}$	-0.071*** (0.0068)	-0.069*** (0.014)	
$\Delta \hat{\rho} \times$ Wind \times Market Prices (RIII)			0.059*** (0.011)
Observations	41,080	41,080	34,194

Notes: this shows that wind plants reduced (increased) their arbitrage when moved from market prices to fixed prices (vice-versa).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• We leverage on structural estimates to **compute mark-ups**:

$$\frac{p_{1t}-\hat{p}_{2t}}{p_{1t}}=\left|\frac{\partial DR_{i1t}}{\partial p_{1t}}\right|^{-1}\frac{q_{i1t}-l_tw_i}{p_{1t}}$$

for $I_t = 1$ fixed prices (RII); $I_t = 0$ market prices (RI and RIII).

Market power in the day-ahead market

Figure: Markup Distribution by Pricing Regime (All Firms)

Notes: This figure plots the markup distributions of all firms by pricing regimes for hours with prices above 25 Euro/MWh.

Market power in the day-ahead market

Figure: Markup Distribution by Amount of Wind and Pricing Regime

Notes: This figure plots the markup distributions for all firms by amount of wind and by the pricing regimes for hours with prices above 25 Euro/MWh.

Model Description

Markets and Demand:

- Sequential markets: day-ahead (p_{t-1}) and spot (p_t)
- Total demand $D(p_t)$
 - $D(p_{t-1})$ (day-ahead) + $[D(p_t) D(p_{t-1})]$ (spot)
- (Some) consumers are myopic

Model Description

Markets and Demand:

- Sequential markets: day-ahead (p_{t-1}) and spot (p_t)
- Total demand $D(p_t)$

•
$$D(p_{t-1})$$
 (day-ahead) + $[D(p_t) - D(p_{t-1})]$ (spot)

イロト 不得下 イヨト イヨト 二日

30 / 38

(Some) consumers are myopic

Technologies:

- Conventional: marginal costs c
- Wind: zero marginal costs; availability $w_i \leq k_i$

Model Description

Markets and Demand:

- Sequential markets: day-ahead (p_{t-1}) and spot (p_t)
- Total demand $D(p_t)$
 - $D(p_{t-1})$ (day-ahead) + $[D(p_t) D(p_{t-1})]$ (spot)
- (Some) consumers are myopic

Technologies:

- Conventional: marginal costs c
- Wind: zero marginal costs; availability $w_i \leq k_i$

Firms and ownership:

- Fringe firms (f) own wind [price takers]
- Dominant firm (d) owns **both technologies** [profit max.]

31/38

・<
・<
・<
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・</

32 / 38

Sequential markets + full arbitrage - FiP

33 / 38

Sequential markets + market power mitigation - FiT

Sequential markets + market power mitigation - FiT

34/38

Comparison across pricing rules

Comparing spot market prices:

$$p_2^M > p_2^B > p_2^F$$

Comparing day-ahead prices:

[Arbitrage vs. forward-contract effects]

$$M: p_{1} = p_{2}^{M} - \left|\frac{\partial D(p_{1})}{\partial p_{1}}\right|^{-1} (D(p_{1}) - w_{f} - (k_{f} - w_{f}))$$

$$F: p_{1} = p_{2}^{F} - \left|\frac{\partial D(p_{1})}{\partial p_{1}}\right|^{-1} (D(p_{1}) - w_{f} - w_{d})$$

• With linear demand, $p_1^F < p_1^M$ iff $w_d > (k_f - w_f)/2$.

Summary of the key results

	FiP	FiT
p_1 p_2 Δp Channel	↓ ↑ ↓ Arbitrage effect	↓ ↓ ↓ Forward contract ef- fect

Summary of the key results

	FiP	FiT
р ₁ р ₂	\downarrow	\downarrow
Δp	\downarrow	\downarrow
Channel	Arbitrage effect	Forward contract ef- fect
Consumer Surplus	higher if $w_f >> w_d$	higher if $w_f << w_d$

Conclusions

- Price exposure encourages fringe producers to be active market participants: arbitrage mitigates market power through their active participations
- Reducing price exposure lowers the fringe producers' incentives to arbitrage but it mitigates market power of the dominant players.

This trade-off depends on market structure: who owns renewable energy.

Policy relevant for:

- Design of renewables' auctions
- Design of other (sequential) markets:

Thank you!

ENERGYECOLAB

Comments? Questions? natalia.fabra@uc3m.es

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで