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Online Appendix

ACE – Analytic Climate Economy

by Christian Traeger

A. Further Results, Model Transformation, and Climate Parametrization

A1. CES-Preferences for Consumption, Investment Goods, and Production Example

This section introduces a variety of final goods. The representative agent has
CES preferences over the final consumption goods and investment in equation (4)
becomes a composite.

Let Ic ∈ {1, ..., Īc} and II = {II , ..., I} denote the sets of final consumption
goods and investment components, respectively, where Īc, II , I ∈ N. These sets
can coincide, overlap, or be disjoint. The representative agent consumes the share
xl,t of good cl,t.

35 As in the base model, a representative consumer maximizes
the discounted sum of the log of a consumption aggregate Ct (objective 8). But
now, the consumption aggregate is a CES-aggregator over a variety of different
final goods

Ct =
(∑
l∈IC

al,t(xl,tcl,t)
st
) 1
st (A.1)

with good-specific weights al,t and substitutability index st ≤ 1 for all t and
l ∈ IC . The final goods follow a production process of the form

cl,t = Al,tK
α
l,tN

1−α−ν
l,t dνl,t [1−D(T1,t)] for l = 1, ..., I (A.2)

with good-specific technology, capital, and labor as well as an energy intermediate
dl,t. The energy intermediate represents the different substitutabilities across
energy sources in different sectors. In each sector, the energy intermediate

dl,t =
(∑
i∈Θl

e
s̃l,t
i,t

) 1
s̃l,t (A.3)

is a CES-combination of different energy sources, where Θl ⊂ {1, ..., IE} specifies
the subset of primary energy sources used in the production of good l. To convert

35For goods that are only used in consumption, l ∈ Ic\II , it is xl,t = 1. For goods that are used in
both the consumption and the investment process, l ∈ Ic∩II , the consumption share xl,t is endogenously
chosen and the remaining share 1−xl,t enters investment. For goods that are only used in the production-
investment process, l ∈ II\Ic, it is xl,t = 0.
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a fossil fuel or renewable resource into energy we need capital and labor and I
assume

ei,t = gi,t(AI+i,t,KI+i,t, NI+i,t, Ei,t)

satisfying gi,t(AI+i,t, γKI+i,t, NI+i,t, Ei,t) = γα̃gi,t(AI+i,t,KI+i,t, NI+i,t, Ei,t),

for all i ∈ {1, ..., IE}. Some fossil fuels Ei,t will be subject to the intertemporal
scarcity constraint (2). I use a general function g to include Cobb-Douglas as well
as formulations with a “bliss point”, i.e., a finite emission level beyond which more
coal or more oil no longer increases production – a feature satisfied in DICE. I refer
to an accompanying paper for a more detailed discussion of these features and
their implications for emissions (Traeger 2021a). Here, I analyze the implications
on the optimal carbon tax. Finally, the investment composite

It =
(∑
l∈II

bl,tc
ζt
l,t

) 1
ζt (A.4)

with investment weights bl,t and substitutability index ζt ≤ 1 for all t and l ∈ II
replaces equation (3) of the base model. This economy features IA = IK = IN =
I + IE different sectors.

PROPOSITION 4: The preference and production extensions of this section re-
place equations (1) and (3) of the base ACE by equations (A.1-A.4). The SCC,
expressed in terms of aggregate consumption equivalents, becomes

SCCt =
Ct

1− βκ
β

Mpre
ξ0

[
(1− βσ)−1

]
1,1
σforc

[
(1− βΦ)−1

]
1,1

(A.5)

where κ ≡ α+ α̃ν.

Assuming coinciding parameter values, the value of the SCC in equation (A.5)
coincides with that of Proposition 2. Also equation (11) of the base model im-
plicitly contains the expression Ct

1−βκ . However, the base model assumes a single
consumption-investment good. This assumption results in the simple and con-

stant consumption rate 1 − βκ, implying that Ct
1−βκ =

(1−βκ)Y nett
1−βκ = Y net

t . More
generally, the SCC is proportional to consumption, which plays the role of inverse
marginal utility in the present period, translating the welfare loss from emitting
a unity of CO2 into today’s consumption equivalents and, thus, USD.

A2. Capital Depreciation

This section derives the capital equation of motion (4), quantifies the correction
factor, and discusses the model’s implication that the consumption rate (but not
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level) is unaffected by climate states. The usual capital accumulation equation,
enriched by climate damages, is

Kt+1 = Yt[1−D(T1,t)]− Ct + (1− δk)Kt .

Defining the consumption rate xt = Ct
Yt[1−D(T1,t)]

and recognizing that Yt[1 −
D(T1,t)]− Ct = Kt+1 − (1− δk)Kt implies36

Kt+1 = Yt[1−D(T1,t)](1− xt)

[
1 + 1−δk

Kt+1
Kt
−(1−δk)

]
.

Defining the capital growth rate gk,t = Kt+1

Kt
− 1, I obtain the stated equation of

motion (4) for capital.
I evaluate the correction factor based on the Penn World Tables (Feenstra,

Inklaar and Timmer 2015). For 2019, currently the latest year of the Penn Word
Tables 10.0, the global depreciation parameter is δannualk = 0.0439, so δk ≈ 0.44.
Averaging capital growth over the past 10 years (using 2017USD values) delivers

gannualk = 0.02949 or gk ≈ 0.29. The resulting correction factor is
[

1+gk,t
δk+gk,t

]
≈ 1.8.

(for a 5 year time step the correction factor would be 3.1, and for an annual time
step 14). For the US, δannualk = 0.046 and gannualk = 0.013, resulting in a decadal
correction factor of 1.9 (or a correction factor of 3.6 for a five year time step).

Treating the growth and depreciation correction in squared brackets as exoge-
nous remains an approximation. The extension shows that the model is robust
against the immediate criticism of not being able to represent the correct capi-
tal evolution and capital output ratio, and against the agent’s neglect of capital
value beyond immediate next period usage. Yet, the crucial implications of the
assumptions underlying equation (4) is that the investment rate is independent of
the climate states. It is the price to pay for an analytic solution. The remainder
of this section shows that this price seems small.

Figure A1 tests ACE’s result (and implicit assumption) that the optimal con-
sumption rate is independent of the climate states. The figure depicts the op-
timal consumption rate generated by a recursive DICE implementation with an
annual time step and, thus, an annual capital decay structure of the usual form
(Traeger 2012b).37 It also abandons the assumption of logarithmic utility, further
stacking the cards against ACE’s assumptions. The first two graphs in the figure
depict the control rules for DICE-2013’s η = 1.45 (inverse of the intertemporal
elasticity of substitution). These two graphs state the optimal consumption rate

36The step uses Kt+1 = Yt[1 − D(T1,t)] − Yt[1 − D(T1,t)]xt + (Yt[1−D(T1,t)]− Ct) ×
(1−δk)Kt

Yt[1−D(T1,t)]−Ct
.

37The recursive implementation based on the Bellman equation solves for the optimal control rule as
a function of the states derlivering the full control surface depicted here. This recursive implementation
has a slightly simplified climate change model compared to the original DICE model, but matches the
Maggic6.0 model, used also as the DICE benchmark, similarly well.
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for the years 2025 and 2205. The third graph in the figure depicts the optimal
consumption rate for the lower value η = 0.66 calibrated by the long-run risk lit-
erature (Vissing-Jørgensen and Attanasio 2003, Bansal and Yaron 2004, Bansal,
Kiku and Yaron 2010, Chen, Favilukis and Ludvigson 2013, Bansal, Kiku and
Yaron 2012, Bansal et al. 2014, Collin-Dufresne, Johannes and Lochstoer 2016,
Nakamura, Sergeyev and Steinsson 2017)

The qualitative behavior is the same for all graphs in Figure A1. Overall, the
figure shows that the optimal consumption rate is largely independent of the cli-
mate states (if the vertical axis started at zero the variation of the control rule
would be invisible). At current temperature levels, the optimal consumption rate
does not depend on the CO2 concentrations. This result is in accordance with the
theoretical result under ACE’s assumption set. However, the optimal consump-
tion rate increases slightly for higher temperatures. It increases by less than a
percentage point from no warming to a 3C warming at low CO2 concentrations.
The increase is lower at higher CO2 concentrations.

The graphs confirm that also in DICE, and in a model with regular annual
capital decay structure and not exactly log-utility, the investment rate is not
used as a primary measure of climate change policy. The rate does not respond
to the CO2 concentration, which is a measure of expected warming. Only once the
temperature dependent damages set in, the consumption rate slightly increases
and the investment rate goes down. Instead of reflecting climate policy, this
(minor) climate dependence of the consumption rate reflects a response to the
damages incurred: these damages reduce the cake to be split into investment and
consumption, then, a slightly higher fraction goes to consumption. This response
is lower when CO2 concentrations are high: then the social planner expects high
temperatures and damages also in the future and is more hesitant to reduce
investment.

A3. Transformation to linearity in states

For notational convenience, I introduce the normalized vector Kt ≡ Kt
Kt

charac-

terizing the distribution of capital over sectors whose components satisfy
∑IK

i=1Ki,t =
1. To obtain the equivalent linear-in-state-system, I replace aggregate capital
Kt =

∑IK
i=1Ki,t by logarithmic capital kt ≡ logKt. I replace temperature levels

in the atmosphere and the different ocean layers by the transformed exponen-
tial temperature states τi,t ≡ exp(ξiTi,t), i ∈ {1, ..., l}. I collect these trans-

formed temperature states in the vector τt ∈ IRl. Finally, I use the consumption
rate xt = Ct

Yt[1−D(T1,t)]
, rather than absolute consumption, as the consumption-

investment control. Only the rate will be separable from the system’s states.
Homogeneity of the production function implies that

Yt = F (At,Nt,Kt,Et) = Kκ
t F (At,Nt,Kt,Et).
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Figure A1. : The graphs analyze the climate (in-)dependence of the optimal
consumption rate x∗ in the wide-spread DICE model, relying on the control rules
of the recursive implementation by Traeger (2012b). The first two graphs assume
the DICE-2013 value η = 1.45, the third graph follows the long-run risk literature
with η = 2

3 . The blue dot in each graph indicates the expected optimal control
and prevailing temperature-CO2 combination along the optimal policy path in
the given year.
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Then, welfare as a function of the consumption rate is

u(xt) ≡ logCt = log xt + log Yt + log[1−D(T1,t)]

= log xt + κ logKt + logF (At,Nt,Kt,Et)− ξ0τ1,t + ξ0.

The Bellman equation in terms of the transformed state variables is

V (kt, τt,Mt,Rt, t) = max
xt,Nt,Kt,Et

log xt + κkt + logF (At,Nt,Kt,Et)

−ξ0τ1,t + ξ0 + βV (kt+1, τt+1,Mt+1,Rt+1, t+1) , (A.6)

and is subject to the following linear equations of motion and constraints. The
equations of motion for the effective capital stock and the carbon cycle are

kt+1 = κkt + logF (At,Nt,Kt,Et)− ξ0τ1,t + ξ0 + log(1−xt)

+ log[1 + gk,t]− log[δk + gk,t] (A.7)

Mt+1 = ΦMt + b
(∑Id

i=1Ei,t + Eexot

)
. (A.8)

where b = e1 in ACE-DICE and b = a in ACE-Joos. Using equation (10), I
transform the temperature’s equation of motion (7) for layer i ∈ {1, ..., l} to

Ti,t+1 =
1

ξ1
log
(
(1−σi,i−1−σi,i+1) exp[ξ1Ti,t]

+σi,i−1 exp[ξ1Ti−1,t] + σi,i+1 exp[ξ1Ti+1,t]
)
.

Using the definitions σii = 1−σi,i−1−σi,i+1 and τi,t = exp(ξ1Ti,t) I find

exp(ξ1Ti,t+1) = σi,i exp[ξ1Ti,t] + σi,i−1 exp[ξ1Ti−1,t] + σi,i+1 exp[ξ1Ti+1,t]

⇒ τi,t+1 = σi,iτi,t + σi,i−1τi−1,t + σi,i+1τi+1,t, i ∈ {2, ..., l},

still using σl,l+1 = 0 for notational convenience (see footnote 12). Noting that

exp[ξ1T0,t] = exp
[
ξ1
s

η
Ft

]
= exp

[
ξ1

s

log 2
log

dMt +Gt
Mpre

]
=
dMt +Gt
Mpre

,

the equation for atmospheric temperature (i = 1) becomes

τ1,t+1 = σ1,1τ1,t + σ1,0
dMt +Gt
Mpre

+ σ1,2τ2,t .
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Note that the linearity in M1,t requires ξ1 = log 2
s as stated in the proposition.

Then, using the definition σforc = σ1,0, the individual equations of motion for
generalized temperature can be collected into the vector equation

τt+1 = στt + σforc
dMt+j +Gt

Mpre
e1 . (A.9)

Finally, the equation of motion for the resource stock is

Rt+1 = Rt −Ed
t . (A.10)

The underlying constraints within periods are∑I
i=0Ni,t = 1, Ni,t ≥ 0,

∑IK
i=1Ki,t = 1, Ki,t ≥ 0, Rt ≥ 0,

and the initial states are given. The present paper assumes that the optimal
labor and capital allocation across sectors has an interior solution and that scarce
resources are stretched over the infinite time horizon along the optimal path,
avoiding boundary value complications.

A4. Illustrating a Two Layer Carbon Cycle

In the simple and insightful case of two carbon reservoirs the carbon cycle’s

transition matrix is Φ =
(

1−δAtm→Ocean δOcean→Atm

δAtm→Ocean 1−δOcean→Atm

)
, where e.g. δAtm→Ocean char-

acterizes the fraction of carbon in the atmosphere transitioning into the ocean in
a given time step. The conservation of carbon implies that both columns add to
unity: carbon that does not leave a layer (δ·→·) stays (1 − δ·→·). The shadow
value becomes

ϕM,1 = βϕτ,1σ
forcMpre

−1(1− β)−1

[
1 + β

δAtm→Ocean

1− β(1− δOcean→Atm)

]−1

.

The shadow value becomes less negative if more carbon flows from the atmo-
sphere into the ocean (higher δAtm→Ocean). It becomes more negative for a higher
persistence of carbon in the ocean (higher 1 − δOcean→Atm). These impacts on
the SCC are straight forward: the carbon in the ocean is the “good carbon” that
does not contribute to the greenhouse effect. In round brackets, the root (1−β)−1

noted in Proposition 2 makes the expression so sensitive to a low rate of pure time
preference.

A common approximation of atmospheric carbon dynamics is the equation of
motion of the early DICE 1994 model. Here, carbon in excess of preindustrial
levels decays as in M1,t+1 = Mpre + (1− δdecay)(M1,t −Mpre). The shadow value
formula becomes

ϕM,1 = βϕτ,1σ
forcM−1

pre

(
1− β(1− δdecay)

)−1
,
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which misses the long-run carbon impact and the SCC’s sensitivity to pure time
preference.

A5. Illustrating a Two Layer Atmosphere-Ocean Temperature System

The two layer example of atmosphere-ocean temperature dynamics has the

transition matrix σ =
(

1−σup1 −σdown1 σdown1

σup2 1−σup2

)
. The corresponding term of the SCC

(equation 11) takes the form

[
(1− βσ)−1

]
11

=

(
1− β (1− σdown1 − σup1 )︸ ︷︷ ︸

persistence in atmosphere

− β2σdown1 σup1

1− β (1− σup2 )︸ ︷︷ ︸
pers. in ocean

)−1

.

Persistence of the warming in the atmosphere or in the oceans increases the
shadow cost. Persistence of warming in the oceans increases the SCC propor-
tional to the terms σdown1 routing the warming into the oceans and σup1 routing
the warming back from the oceans into the atmosphere. The discount factor β
accompanies each of these transition coefficients as each of them causes a one
period delay. Taking the limit of β → 1 confirms that an analogue to Proposition
2’s part (3) does not hold for the temperature system

lim
β→1

ϕτ,1 = −ξ0(1 + ϕk)
[
(1− σ)−1

]
11

= −ξ0(1 + ϕk)

σup1

6=∞. (A.11)

As the discount rate approaches zero, the transient temperature dynamics char-
acterized by σdown1 and σup2 becomes irrelevant for evaluation, and only the weight
σup1 reducing the warming persistence below unity contributes.38

Extending on the “missing time preference sensitivity” in the general case, note
that temperature is an intensive variable: it does not scale proportional to mass
or volume (as is the case for the extensive variable carbon). The columns of
the matrix σ do not sum to unity. As a consequence of the mean structure
in equation (7), however, the rows in the ocean layers’ transition matrix sum to
unity. The first row determining next period’s atmospheric temperature sums to a
value smaller than unity: it “misses” the weight that the mean places on radiative
forcing. The “missing weight” is a consequence of the permanent energy exchange
with outer space. Radiative forcing characterizes a flow equilibrium of incoming
and outgoing radiation.

38I note that the carbon cycle lacks the reduction in persistence deriving from the forcing weight σup1 .
With this observation, equation (A.11) gives another illustration of the impact of mass conservation
in the case of carbon: “σup1 → 0 ⇒ ϕτ,1 →∞”. Note that in the SCC formula σup1 cancels, as it
simultaneously increases the impact of a carbon change on temperature. This exact cancellation (in the
limit β → 1) is a consequence of the weights σup1 on forcing and 1 − σup1 on atmospheric temperature
summing to unity. The result that a warming pulse has a transitional impact and an emission pulse has
a permanent impact on the system is independent of the fact that these weights sum to unity.
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A6. Climate Parametrization

ACE-DICE uses Nordhaus and Sztorc’s (2013) carbon cycle for the DICE 2013
model. For a 10 year time step, the transition matrix is

Φ =

0.8240 0.0767 0
0.1760 0.9183 0.0007

0 0.0050 0.9993

(A.12)

This matrix is obtained by rescaling the original coefficients of the DICE 2013
model as follows

Ξ∗ = (0.088, 0.0025, 0.03832888889, 0.00033750); Ξ = Ξ∗
step

5
;(A.13)

Φ =

[1− Ξ1 Ξ3 0
Ξ1 1− Ξ2 − Ξ3 Ξ4

0 Ξ2 1− Ξ4

(A.14)

where step = 10 is the time step. I refer to the working paper version for a
graph demonstrating that the rescaled 10 year carbon cycle dynamics is virtually
indistinguishable from the 5 year dynamics using DICE 2013 BAU emissions
(Traeger 2018).

ACE-Joos uses Joos et al.’s (2013) impulse response parametrization, which is

a = (a0, a1, a2, a3)> = (0.2240, 0.2824, 0.2763)> and τ = (394.4, 36.54, 4.304)

in ∆M1,t = a0 +

3∑
i=1

ai exp

(
− t

τi

)
.

For ACE-Joos’ box representation and a 10 year time step, these model parame-
ters translate into the transition matrix

Φ =


1.0000 0 0 0

0 0.9750 0 0
0 0 0.7606 0
0 0 0 0.0979

(A.15)

where the diagonal entries are γi = exp
(
− step

τi

)
and a = (a0, a1, a2, a3)> charac-

terizes the fraction of carbon going into a particular box as in the original Joos
et al. (2013) formulation.

My calibration of the non-linear temperature dynamic system to MAGICC6.0
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delivers the transition matrix

σ =

0.000000027 0.461806 0
0.076520 0.895994 0.0274865

0 0.003993 0.996007

(A.16)

for a 10 year time step, where σforc = 0.538194. The thin red-dashed line in
Figure 4 calibrates to MAGICC6.0 using an annual time step and finds

σann =

0.711637 0.142193 0
0.007035 0.991129 0.001836

0 0.000379 0.999621

(A.17)

going along with σforc = 0.146170. Comparing the two matrices shows that
atmospheric temperature’s autoregression hardly plays a role on the decadal scale,
but does play a role in a model with an annual time step. I use this calibration
only to point out the similarity between a one year and a 10 year time step
impulse response. I do not recommend ACE for an annual time step given the
approximation of capital depreciation. For a 5 year time step, the calibration
delivers the transition matrix

σ5y =

0.0000104 0.486022 0
0.036187 0.953354 0.01045

0 0.001918 0.998081

(A.18)

going along with σforc = 0.513966.39

In all scenarios I am using a climate sensitivity of cs = 3 and, thus, ξ1 = log 2
3 =

0.231049. The base scenario’s damage coefficient is ξ0 = 0.02219. HSP damages
are characterized by the damage semi-elasticity ξ0 = 0.09808 and under HSP∗ by
ξ0 = 0.10876. I use the IMF’s October 2020 forecast for global purchasing power
parity output in 2020, which is 130.187 trillion USD. The IMF’s corresponding
investment rate forecast is 0.26108 (IMF 2020).

39For a 5 year time step, simulating capital evolution with the corresponding correction factor works
fine, but it would not seem reasonable to endogenously calibrate time preference from the investment
rate. For this purpose, it seems better to follow Anderson and Brock’s (2021) suggestion to endow
ACE with a logarithmic capital depreciation model instead; van der Ploeg and Rezai (2021) follow this
suggestion, but use the TCRE model for their climate component.
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B. Proofs and Calculations

B1. Proof of Proposition 1

1) Sufficiency: I show that the affine value function

V (kt, τt,Mt,Rt, t) = ϕkkt +ϕ>MMt +ϕ>τ τt +ϕ>R,tRt + ϕt (B.1)

solves the linear-in-state system corresponding to the equations of sections I.A and
I.B with the functional form assumptions presented in Proposition 1. Appendix
A.A3 transformed these assumptions into the linear-in-state-system summarized
by equations (A.6-A.10), which I take as point of departure. Note that the coef-
ficient on the resource stock has to be time-dependent: the shadow value of the
exhaustible resource increases (endogenously) over time following the Hotelling
rule.

The controls in the equations of motion (A.7)-(A.10) are additively separated
from the states. Therefore, maximizing the right hand side of the resulting Bell-
man equation delivers optimal control rules that are independent of the state
variables. These controls are functions of the shadow values, but independent
of the states. Solving the Bellman equation then amounts to a set of coefficient
matching conditions determining the shadow values.

I provide the details simultaneously for the different model versions where T0,t =
s
ηFt (original “delayed” timing) or T0,t = s

ηFt+1 (advanced timing) and where

radiative forcing derives from the carbon cycle model (with forcing equation 6) or
the box model based on Joos et al. (2013) (with forcing equation 6’) and for the
model where Mt+1 is governed by equation (5) or equation (5’). For this purpose,
I define j ≡ 0 for the delayed system and j ≡ 1 for the advanced system so
that T0,t = s

ηFt+j in both cases. To cover the carbon cycle model of ACE-DICE

simultaneously with the impulse response model of ACE-Joos (see Section I.B),
I define b ≡ e1 and d ≡ e>1 for the case of a carbon cycle under equation (5). I
define b ≡ Φe1 and d ≡ e>1 for the case of a carbon cycle under equation (5’).
I define b = a (the model’s weight vector) and d ≡ (1, 1, 1, 1) in the case of the
impulse response model under equation (5). I define b = Φa and d ≡ (1, 1, 1, 1)
in the case of the impulse response model under equation (5’).40

Inserting the value function’s trial solution (equation B.1) and the next period
states (equations A.7-A.10) into the (deterministic) Bellmann equation (A.6) de-

40The definition of d implies that dMt is atmospheric carbon M1,t in the carbon cycle model and the

sum of the different carbon boxes
∑3
i=0Mi,t in the impulse response model.
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livers

ϕkkt+ϕ
>
MMt +ϕ>τ τt +ϕ>R,tRt + ϕt = max

xt,Nt,Kt,Et

log xt + βϕk log(1−xt) (B.2)

+ (1 +βϕk)κkt + (1 +βϕk) logF (At,Nt,Kt,Et)

− (1 +βϕk)ξ0τ1,t + (1 +βϕk)ξ0 +λNt
(

1−
∑IN

i=1Ni,t

)
+ βϕk(log[1 + gk,t]− log[δk + gk,t]) + λKt

(
1−

∑IK
i=1Ki,t

)
+ βϕ>R,t+1

(
Rt −Ed

t

)
+ βϕt+1

+βϕ>M

(
ΦMt + b

(∑Id

i=1Ei,t + Eexot

))
+βϕ>τ

(
στt + e1σ

forcdMt+j +Gt
Mpre

)
.

In the case of advanced timing (j = 1), it is dMt+1 = d
(
ΦMt + b

(∑Id

i=1Ei,t + Eexot

))
.

In the general case I can therefore write dMt+j = d
(
ΦjMt + jb

(∑Id

i=1Ei,t + Eexot

))
,

where the dummy j eliminates additional contributions in the case of the original
“delayed” timing.

Maximizing the right hand side of the Bellman equation over the consumption
rate yields

1

x
− βϕk

1

1− x
= 0 ⇒ x∗ =

1

1 +βϕk
. (B.3)

The optimal labor, capital, and resource inputs depend on the precise assumptions
governing production and energy sector, i.e., the specification of F (At,Nt,Kt,Et).
For a well-defined energy system, I obtain unique solutions for these optimal in-
puts as functions of the technology levels, shadow values, and current states. In
detail, the first order conditions for the capital shares deliver

(1 +βϕk)

∂F (At,Nt,Kt,Et)
∂Ki,t

F (At,Nt,Kt,Et)
= λKt

⇔ Ki,t =
1

λKt
(1 +βϕk)σY,Ki(At,Nt,Kt,Et)

⇒ λKt =

IK∑
i=1

(1 +βϕk)σY,Ki(At,Nt,Kt,Et)

⇒ Ki,t =
σY,Ki(At,Nt,Kt,Et)∑IK
i=1 σY,Ki(At,Nt,Kt,Et)

,
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which is an explicit equation only in the case of constant elasticities

σY,Ki(At,Nt,Kt,Et) ≡ ∂F (At,Nt,Kt,Et)
∂Ki,t

Ki,t
F (At,Nt,Kt,Et)

, and an implicit equation

that has to be solved together with the other first order conditions otherwise.
Analogously, the first order conditions for the labor input deliver

(1 +βϕk)

∂F (At,Nt,Kt,Et)
∂Ni,t

F (At,Nt,Kt,Et)
= λNt

⇒ Ni,t =
σY,Ni(At,Nt,Kt,Et)∑IN
i=1 σY,Ni(At,Nt,Kt,Et)

,

with elasticities σY,Ni(At,Nt,Kt,Et) ≡ ∂F (At,Nt,Kt,Et)
∂Ni,t

Ni,t
F (At,Nt,Kt,Et)

. The first

order conditions for a scarce (fossil) resource input are

(1 +βϕk)

∂F (At,Nt,Kt,Et)
∂Ei,t

F (At,Nt,Kt,Et)
= β

(
ϕR,i,t+1 −ϕ>Mb− jϕ1,τσ

forc db

Mpre

)
⇔ Ei,t =

(1 +βϕk)σY,Ei(At,Nt,Kt,Et)

β
(
ϕR,i,t+1 −ϕ>Mb− jϕ1,τσforc

db
Mpre

)

with elasticities σY,Ei(At,Nt,Kt,Et) ≡ ∂F (At,Nt,Kt,Et)
∂Ei,t

Ei,t
F (At,Nt,Kt,Et)

. Recall

that j is a dummy eliminating the final contribution to the denominator in the
case of “delayed” timing. The first order conditions for a non-scarce resource
input are analogous but without the shadow cost term βϕR,i,t+1.

Solving the (potentially simultaneous) system of first order conditions, I ob-
tain the optimal controls N∗t (At , ϕk,ϕM ,ϕR,t+1), K∗t (At , ϕk,ϕM ,ϕR,t+1), and
E∗t (At , ϕk,ϕM ,ϕR,t+1). I will suppress the detailed dependencies below for nota-
tional convenience. Knowing these solutions is crucial for determining the precise
output path and energy transition under a given policy regime. However, the
SCC and, thus, the carbon tax depend only on the structure and optimization of
the controls but not on their quantification.

Inserting the (general) control rules into the maximized Bellman equation and
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collecting terms that depend on state variables on the left hand side delivers

(
ϕ>M − βϕ>MΦ− βϕτ,1

σforc

Mpre
dΦj

)
Mt +

(
ϕ>τ − βϕ>τ σ + (1 +βϕk)ξ0e

>
1

)
τt(

ϕk − (1 +βϕk)κ
)
kt +

(
ϕ>R,t − βϕ>R,t+1

)
Rt

+ϕt = βϕt+1 (B.4)

+ log x∗t (ϕk ) + βϕk log(1−x∗t (ϕk )) + (1 +βϕk)ξ0

+ (1 +βϕk) logF (At,N
∗
t ,K∗t ,E∗t )

+ βϕk(log[1 + gk,t]− log[δk + gk,t])− βϕ>R,t+1E
d
t
∗

+ βϕ>Mb
(∑Id

i=1Ei,t + Eexot

)
+ βϕτ,1

σforc

MpreGt

+ jβϕ1,τσ
forcdb

(∑Id

i=1Ei,t + Eexot

)
.


≡ B(·)

The equality holds for all levels of the state variables if and only if the coefficients
in front of the state variables vanish, and the evolution of ϕt satisfies the state
independent part of the equation. Setting the states’ coefficients to zero yields

ϕk − (1 +βϕk)κ = 0 ⇒ ϕk =
κ

1− βκ
(B.5)

ϕ>M − βϕ>MΦ− βϕτ,1
σforc

Mpre
dΦj = 0 ⇒ ϕ>M =

βϕτ,1σ
forc

Mpre
dΦj(1− βΦ)−1 (B.6)

ϕ>τ + (1 +βϕk)ξ0e
>
1 −βϕ>τ σ = 0 ⇒ ϕτ =−ξ0(1 +βϕk)e

>
1 (1− βσ)−1 (B.7)

ϕ>R,t − βϕ>R,t+1 = 0 ⇒ ϕR,t = β−tϕR,0 . (B.8)

The initial values ϕ>R,0 of the scarce resources depend on the precise evolution
of the economy and, thus, depends on assumptions about production and the
energy sector. Using the shadow value of log capital in equation (B.3) results in
the optimal consumption rate x∗ = 1− βκ. Then equation equation (B.4) turns
into the condition

ϕt − βϕt+1 = B(·). (B.9)

This condition will be satisfied by picking the sequence ϕ0, ϕ1, ϕ2, .... Equa-
tion (B.9) does not pin down the initial value ϕ0. The additional condition
limt→∞ β

tV (·) = 0 ⇒ limt→∞ β
tϕt = 0 pins down this initial value ϕ0 ensuring

that the value function is normalized just as the infinite sum of optimized utility
( Stokey and Lucas 1989, chapter 4.1). Yet, optimal policy does not dependent
on the sequence ϕ0, ϕ1, ϕ2, ϕ3, ... .

2) Necessity: The affine value function solves the system if and only if it is
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linear-in-state. I have to show that no other transformation of capital or tem-
perature, no other damage function, and no other non-linear mean can achieve
the linear-in-state transformation of the equations in sections I.A and I.B. I take
as common knowledge that only the log-transformation of capital will solve the
system with an affine value function.

To obtain a linear-in-state structure, transformed atmospheric temperature has
to be linear in atmospheric carbon. By assumption, temperature evolves as a
generalized mean:

Mi(Ti−1,t , Ti,t , Ti+1,t) = f−1[σi,i−1f(Ti−1,t) + σi,if(Ti,t) + σi,i+1f(Ti+1,t)]

and atmospheric equilibrium temperature for a given forcing is

T0,t =
s

η
Ft =

s

log 2
log

M1,t+j +Gt
Mpre

,

which is logarithmic in the atmospheric carbon stock. The equation of motion of
atmospheric temperature T1,t is therefore

T1,t+1 = M1(T0,t , T1,t , T2,t) = f−1[σ1,0f(T0,t) + σ1,1f(T1,t) + σ1,2f(T2,t)]

⇔ f(T1,t+1) = σ1,0f

(
s

log 2
log

M1,t+j +Gt
Mpre

)
+ σ1,1f(T1,t) + σ1,2f(T2,t). (B.10)

First, equation (B.10) implies that f(T1,t) and f(T2,t) have to be linear to permit
a linear-in-state interaction between generalized atmospheric and upper ocean
temperature (atmospheric temperature appears on both left and right side of

the equality). Second, equation (B.10) implies that f
(

s
log 2 log

M1,t+j+Gt
Mpre

)
has

to be linear in M1,t+j to permit a linear-in-state interaction between generalized

atmospheric temperature and atmospheric carbon. Thus, f(z) = exp
(

log 2
s z
)

up

to positive affine transformation. Yet, positive affine transformations of f leave
the generalized mean unchanged as they simply cancel with the inverse (Hardy,
Littlewood and Polya 1964). Note that this step fixes both the functional form
of f and the parameter ξ1 = log 2

s .41 Consequently, the generalized temperature
state delivering a linear-in-state dynamics and a linear contribution to the value
function has to be τi,t = exp(ξ1Ti,t) for i ∈ {1, 2}. It follows inductively from

f(Ti,t+1) = σi,i−1f(Ti−1,t) + σi,if(Ti,t) + σi,i+1f(Ti+1,t)

for i = 2, ..., l − 1 that τi,t = exp(ξ1Ti,t) has to hold for all i ∈ {1, ..., l}, up to
affine transformations with a joint multiplicative constant.

41The earlier working paper version uses a slightly generalized version of the generalized mean M1(·)
permitting additional degrees of freedom (Traeger 2015). However, additional quality of the fit achieved
with these additional weight did not warrant the complications in the presentation.



VOL. VOL NO. ISSUE ACE – ANALYTIC CLIMATE ECONOMY 55

Finally, I show that damages have to be of the form stated in equation (9).
Taking the logarithm of the capital’s equation of motion (4) delivers

logKt+1 = log Yt + log[1−D(T1,t)] + log(1− xt) + log

[
1 + gk,t
δk + gk,t

]
,

where log Yt is linear in the state kt = logKt. To render the system linear in the
states, at any time t, there have to exist two constants c1, c2 ∈ IR such that

log[1−D(T1,t)] = c1τ1,t + c2 = c1 exp(ξ1T1,t) + c2

⇒ D(T1,t) = 1− exp(c1 exp(ξ1T1,t) + c2).

Moreover, c1 = −c2 ≡ ξ0 ∈ IR follows from the requirement that damages are
zero at T1,t = 0.

B2. Proof of Proposition 2

Proof of Parts (1&2): A. Original “delayed” timing & atmospheric carbon
approach:
Here, j ≡ 0, b ≡ e1 and d ≡ e>1 . Then, dΦj = e>1 . The SCC is the negative of the
shadow value of atmospheric carbon expressed in money-measured consumption
units. Inserting equation (B.5) for the shadow value of log-capital and (B.7)
for the shadow value of atmospheric temperature (first entry of the vector) into
equation (B.6) characterizing the shadow value of carbon in the different reservoirs
delivers

ϕ>M = −ξ0

(
1 +β

κ

1− βκ

)[
(1− βσ)−1

]
1,1

βσforc

Mpre
e>1 (1− βΦ)−1 .

The expression characterizes the social cost in terms of welfare units. This
marginal welfare cost translates into a consumption change as follows:
dut = 1

Ct
dCt = 1

x∗Y nett
dCt ⇒ dCt = (1 − βκ)Y net

t dut. Thus, observing that(
1 + β κ

1−βκ
)

= 1
1−βκ , the SCC in consumption units is

SCC = −(1− βκ)Y net
t ϕM,1 = Y net

t ξ0

[
(1− βσ)−1

]
1,1

βσforc

Mpre

[
(1− βΦ)−1

]
1,1
.

B. Advanced timing & emission release approach:
Here, j ≡ 1, b ≡ Φe1 and d ≡ e>1 . The SCC now follows from the impact of an
emission unit on future welfare. The right side of equation (B.B1) shows that the
impact of period t emissions on next period’s value function is

βϕ>Mb
(∑Id

i=1Ei,t + Eexot

)
+ jβϕ1,τσ

forc db
(∑Id

i=1 Ei,t+E
exo
t

)
,

Mpre
.
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In the present case, j = 1, b ≡ Φe1, d ≡ e>1 and, thus, db = e>1 Φe1 = Φ1,1. By
equations (B.6) and (B.7) the SCC in utils is

−βϕ>Mb− βϕ1,τσ
forc db

Mpre
= β

βϕτ,1σforc

Mpre
dΦ(1− βΦ)−1b− βϕ1,τσ

forc db
Mpre

= −βσforc

Mpre
ϕτ,1

(
βdΦ(1− βΦ)−1b+ db

)
= −βσforc

Mpre
ϕτ,1

(
db+ βdΦ

(∑∞
i=0 β

iΦi
)
b
)

= −βσforc

Mpre
ϕτ,1

(
db+ d

(∑∞
i=0 β

i+1Φi+1
)
b
)

= −βσforc

Mpre
ϕτ,1

(
d
(∑∞

i=0 β
iΦi
)
b
)

= −βσforc

Mpre
ϕτ,1

(
d(1− βΦ)−1b

)
= −βσforc

Mpre
ξ0(1 +βϕk)e

>
1 (1− βσ)−1

(
d(1− βΦ)−1b

)
where I used the Neuman series (1− βΦ)−1 =

∑∞
i=0 β

iΦi.
Proof of Part (3): Mass conservation of carbon implies that the columns of

Φ add to unity. In consequence, the vector with unit entry in all dimensions is
a left and, thus, right eigenvector. The corresponding eigenvalue is one and the
determinant of 1 − βΦ has the root 1 − β. It follows from Cramer’s rule (or as
an application of the Cayley-Hamilton theorem) that the entries of the matrix
(1− βΦ)−1 are proportional to (1− β)−1.

B3. General Remarks on Population Change (Section III.E)

Population change is a special case of Proposition 3 that I prove below. The
Proposition states the analytic closed-form result obtained under the assumption
of a constant population growth rate. The quantitative results in Table 1 rely on
non-constant population growth. They use the UN population growth scenario
delivering decadal growth factors 1.0967, 1.0761, 1.0583, 1.0428, 1.0303, 1.0205,
1.0127, 1.0061. I assume population to be stationary after 2100, which is in line
with the corresponding UN data that almost converges by its end year 2100. I first
calculate the shadow value of atmospheric carbon using the constant population
growth solution (with zero growth) for 2100 (see proposition). Then, I recursively
calculate the present shadow value using the equations (B.15-B.17) derived below
towards the end of the proof.

No temperature lag under population change. The scenarios omitting tem-
perature lag under a non-stationary population change adjust equations (B.16)
and (B.17) as follows. The absence of temperature dynamics or delay eliminates
the term containing the generalized heat transition matrix σ in equation (B.16).
As a result the temperature’s shadow value is directly determined by the damage
coefficient and the shadow value of log-capital. It also eliminates the parameter
σforc from equation (B.17). Again, the quantitative solution for the UN growth
scenario first calculates the stationary shadow values post 2100 (merely omitting
σforc and e>1 (1−βσ)−1) and then recursively calculates the present shadow values
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using equation (B.15) and the modified versions of equations (B.16) and (B.17)
discussed above.

B4. Proof of Proposition 3

The welfare objective (14) replaces the term logCt on the r.h.s. of the (untrans-
formed) Bellman equation by the term

∑
i∈P αi,t log ci,t + λp,t

(
Ct −

∑
i∈P pi,tci,t

)
, (B.11)

using the Lagrange multiplier λp,t. ACE now maximizes over all ci,t, i ∈ P , as
well as aggregate consumption Ct. Group i’s consumption levels ci,t only appears
in the Bellman equation in the terms stated in equation (B.11). Thus, the first
order condition for group i’s consumption is

αi,t
ci,t

= λp,tpi,t ⇒ ci,t =
αi,t
pi,t

λ−1
p,t .

Thus, the consumption constraint yields

Ct =
∑
i∈P

pi,tci,t =
∑
i∈P

pi,t
αi,t
pi,t

λ−1
p,t = λ−1

p,t

∑
i∈P

αi,t = λ−1
p,tαt ⇒ λp,t = C−1

t αt.

The FOC for aggregate consumption replaces the earlier marginal utility C−1
t

with the shadow value of the consumption constraint λp,t = C−1
t αt. Thus, in part

i), where αt = 1 for all t, the Bellman equation remains unaltered and so does
the solution for the SCC.

For part ii), the FOC for aggregate consumption picks up another constant
and I have to recalculate the FOC for the aggregate consumption rate. After
optimizing the individual consumption levels ci,t, the equations above imply that
period t’s wefare contribution is

∑
i∈P

αi,t log ci,t =
∑
i∈P

αi,t log

(
αi,t
pi,t

λ−1
p,t

)
=
∑
i∈P

αi,t log

(
αi,t
αtpi,t

Ct

)

= αt logCt +
∑
i∈P

αi,t

[
log

αi,t
αt
− log pi,t

]
︸ ︷︷ ︸

≡ᾱt

,

where ᾱt is an exogenous additive constant. The crucial change to the Bellman
equation derives from the constant αt multiplying aggregate consumption. After
expressing the objective in terms of the aggregate consumption rate, Bellman
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equation (A.6) turns into

V (kt, τt,Mt,Rt, t) = max
xt,Nt,Kt,Et

αt(log xt + κkt + logF (At,Nt,Kt,Et))

+αt(−ξ0τ1,t + ξ0) +ᾱt +βV (kt+1, τt+1,Mt+1,Rt+1, t+1) . (B.12)

From here, there are two ways forward. One can use the original trial solution
for the value function permitting the shadow values to change over time. More
elegantly, at least for the case of a constant growth rate, take the trial solution

V (kt, τt,Mt,Rt, t) = αtϕkkt + αtϕ
>
MMt + αtϕ

>
τ τt + αtϕ

>
R,tRt + ϕt. (B.13)

Plugging this trial-solution into (B.12) and dividing by αt delivers

ϕkkt +ϕ>MMt +ϕ>τ τt +ϕ>R,tRt + ϕt

= max
xt,Nt,Kt,Et

log xt + κkt + logF (At,Nt,Kt,Et) +−ξ0τ1,t + ξ0 +
ᾱt
αt

+β
αt+1

αt

(
ϕkkt+1 +ϕ>MMt+1 +ϕ>τ τt+1 +ϕ>R,t+1Rt+1 + ϕt+1

)
. (B.14)

Denoting the, by assumption, constant growth factor of the intergenerational
weight αt by g = αt+1

αt
, equation (B.14) corresponds to the original dynamic

programming problem with discount factor βg replacing the original discount
factor β. The constant ᾱt

αt
affects the absolute welfare level in utils, however, it

has no impact on the shadow values (see derivation of the original shadow values).
Thus, we obtain the same shadow value formula for ϕM,1 in utils as before. Yet,
our new value function (B.13) multiplies this ϕM,1 with the intergenerational
weight αt. At the same time, we have derived the shadow value of aggregate
consumption as λp,t = C−1

t αt, and the conversion factor from utils to consumption
changes to dCt = Ctα

−1
t dWt. The novel α−1

t in the conversion factor cancels the
multiplier αt in front of the shadow value ϕM,1 and, therefore, the only change in
the SCC formula remains β → βg.

In the general case with non-constant populations growth, the shadow values in
equation (B.14) have to pick up time indices

ϕk,tkt +ϕ>M,tMt +ϕ>τ,tτt +ϕ>R,tRt + ϕt

= max
xt,Nt,Kt,Et

log xt + κkt + logF (At,Nt,Kt,Et) +−ξ0τ1,t + ξ0 +
ᾱt
αt

+β
αt+1

αt

(
ϕk,t+1kt+1 +ϕ>M,t+1Mt+1 +ϕ>τ,t+1τt+1 +ϕ>R,t+1Rt+1 + ϕt+1

)
.

Letting gt = αt+1

αt
, and plugging in the expressions for the next period states as
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in equation (B.2) delivers the first order condition for the consumption rate

1

xt
= βϕk,t+1

gt
1− xt

⇒ x∗t =
1

1 + βgtϕk,t+1
.

Also the other controls remain independent of the states. Next, I have to insert
the controls into the maximized Bellman equation and collect terms that depend
on the state variables on the left as in equation (B.4). All that changes w.r.t. the
earlier derivation is that we distinguish present from next period shadow values,
which are multiplied by the growth factor gt(
ϕ>M,t − βgtϕ>M,t+1Φ− βgtϕτ,1,t+1

σforc

Mpre
dΦj

)
Mt

+
(
ϕ>τ,t − βgtϕ>τ,t+1σ + (1 + βgtϕk,t+1)ξ0e

>
1

)
τt

+
(
ϕk,t − (1 + βgtϕk,t+1κ

)
kt +

(
ϕ>R,t − βgtϕ>R,t+1

))
Rt + ϕt = βϕt+1 +B(·)

where B(·) is defined in equation (B.4). The resulting recursion equations for the
shadow values that eliminate the state coefficients are

ϕk,t − (1 + βgtϕk,t+1)κ = 0 ⇒ ϕk,t = κ+ βgtκϕk,t+1 (B.15)

ϕ>τ,t + (1 + βgtϕk,t+1)ξ0e
>
1 −βgtϕ>τ,t+1σ = 0

⇒ ϕ>τ,t = βgtϕ
>
τ,t+1σ − (1 + βgtϕk,t+1)ξ0e

>
1 (B.16)

ϕ>M,t − βgtϕ>M,t+1Φ− βgtϕτ,1,t+1
σforc

Mpre
dΦj = 0

⇒ ϕ>M,t =
βgtϕτ,1,t+1σ

forc

Mpre
dΦj + βgtϕ

>
M,t+1Φ. (B.17)

or, e.g., with ACE-DICE standard timing

⇒ ϕ>M,t =
βgtϕτ,1,t+1σ

forc

Mpre
e>1 + βgtϕ

>
M,t+1Φ.

Once population stabilizes we are in a stationary state where our original solution
holds. From that stationary state, equations (B.15-B.17) deliver the recursion to
calculate the present shadow values, first solving (B.15), then (B.16), and then
(B.17).

As earlier, the SCC converts the shadow value of atmospheric carbon into con-
sumption units using the relation derived above, dCt = Ctα

−1
t dWt. The shadow

value of atmospheric carbon is now αtϕM,1,t because of the differing trial solu-
tion. Thus, once again the αt cancels and the conversion of the shadow value into
consumption units works equivalently to the cases without population weighting.
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B5. Proof of Proposition 4

First, observe that the production processes of the final goods cl,t are all ho-
mogenous of degree κ ≡ α + α̃ν in capital. As a result, both Ct and It are also
homogenous of degree κ in capital. Moreover, I can pull the production damage
factor [1−D(T1,t)] from equation (A.2) through the CES aggregators in equations
(A.1) and (A.4). Thus,

Ct =

∑
l∈Ic

al,t

xl,tAl,tKα
l,tN

1−α−ν
l,t

(∑
i∈Θl

(gi,t(Ai,t,Ki,t, Ni,t, Ei,t))
s̃l,t
) 1
s̃l,t

νst
1
st

×[1−D(T1,t)]

=

∑
l∈Ic

al,t

xl,tAl,tKαl,tN1−α−ν
l,t

(∑
i∈Θl

(gi,t(Ai,t,Ki,t, Ni,t, Ei,t))
s̃l,t
) 1
s̃l,t

νst
1
st

︸ ︷︷ ︸
≡ΩC,t(At,Nt,Kt,Et)

×[1−D(T1,t)]K
α+α̃ν
t = ΩC,t(xt,At,Nt,Kt,Et)[1−D(T1,t)]K

α+α̃ν
t

and analogously It = ΩI,t(xt,At,Nt,Kt,Et)[1−D(T1,t)]K
α+α̃ν
t . I find

logCt = log (ΩC,t(xt,At,Nt,Kt,Et)) + log[1−D(T1,t)] + (α+ α̃ν) logKt

= log (ΩC,t(xt,At,Nt,Kt,Et))− ξ0τ1,t + ξ0 + κkt,

replacing the terms log xt + logF (At,Nt,Kt,Et) in equation (A.6) by the term
log (ΩC,t(xt,At,Nt,Kt,Et)). Similarly, the equation of motion for log-capital (A.7)
changes into

kt+1 = κkt + log (ΩI,t(xt,At,Nt,Kt,Et))− ξ0τ1,t + ξ0 + log[1 + gk,t]

− log[δk + gk,t]

replacing the terms log(1 − xt) + logF (At,Nt,Kt,Et) in equation (A.6) by the
term log (ΩI,t(xt,At,Nt,Kt,Et)). The maximization on the r.h.s. Bellman equa-
tion (A.6) now entails the labor, energy, and capital distribution within and across
consumption and investment production processes. Instead of optimizing w.r.t. a
single consumption rate, the maximization is now over all the consumption rates
xl,t of those goods that can be used in consumption and in investment, i.e., where
l ∈ IC ∩ II . Let x̂t denote the vector of endogenously chosen consumption rates,
i.e., the vector containing all xl,t with l ∈ IC ∩ II . The r.h.s. of the Bellman
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equation (B.2) on page 51 now reads

max
x̂t,Nt,Kt,Et

log (ΩC,t(xt,At,Nt,Kt,Et)) + βϕk log (ΩI,t(xt,At,Nt,Kt,Et))

+λNt
(
αt−

∑IN
i=1Ni,t

)
+ λKt

(
1−

∑IK
i=1Ki,t

)
− βϕ>R,t+1E

d
t

+βϕM,1

(∑Id

i=1Ei,t + Eexot

)
+ ...

where I omit terms that are independent of the controls.
As in the original problem, the solutions to the maximization problems of the

r.h.s. Bellman equation are independent of the states because the equation ad-
ditively separates the terms containing the controls from the terms containing
the states. As a result, the FOCs and their solutions change, but the shadow
values remain the same as in the original problem (equations B.5-B.8). The
change to the SCC formula results from dealing with a consumption variety in
the consumption-investment trade-off and the conversion of the shadow price of
atmospheric carbon into consumption equivalents.

Expressing the shadow price of atmospheric carbon in equivalents of the con-
sumption aggregate Ct, I still have the conversion factor dut = 1

Ct
dCt ⇒ dCt =

Ctdut. In Proposition 2, the simple constant aggregate consumption rate x∗ =
(1−βκ) implied Ct = x∗Y net

t = (1−βκ)Y net
t and the factor (1−βκ) canceled the

shadow value’s term 1 + βϕk = 1 + β κ
1−βκ = 1

1−βκ . Absent such a simplification,

the SCC remains with the term Ct
1−βκ instead of Y net

t .



r.p.t.p. Scenario Parameter Carb w/o TD SCC cent per Euro-cent
changes Mult USD in USD Gallon per liter

1.4%
1 base (ACE-DICE) 4.3 50 30 27 6
2 ACE-Joos (Joos) Φ 4.3 49 30 27 6
3 HSP-damages (HSP) ξ0 4.3 219 134 118 27

x 4.3% 4 productivity recal κ, β 2.2 19 11 9 2
5 productivity eq. (13) κ 4.3 56 34 30 7
6 Population growth (pg) g 63 39 34 8

x 2.3% 7 Pop growth recalib (pg-re) g, β 40 24 21 5
x 4.3% 8 HSP & prod recal ξ0, κ, β 2.2 85 48 42 10
x 4.3% 9 Joos & HSP & prod recal Φ, ξ0, κ, β 2.1 80 45 39 9

10 HSP & prod (13) ξ0, κ 4.3 248 152 134 31
x 4.3% 11 prod recal & pg κ, β, g 23 13 11 3
x 5.2% 12 prod recal & pg-re κ, β, g 18 10 9 2

13 prod (13) & pg κ, g 72 44 39 9

x 4.3% 14 HSP & prod recal & pg ξ0, κ, β, g 102 57 50 12
x 5.2% 15 HSP & prod recal & pg-re ξ0, κ, β, g 81 45 39 9

16 HSP & prod (13) & pg ξ0, κ, g 319 197 173 40

0.5%
17 expert discounting 8.4 109 75 66 15
18 ACE-Joos (Joos) Φ 8.9 115 79 70 16
19 HSP-damages (HSP) ξ0 8.4 480 331 291 68
20 productivity eq. (13) κ 8.4 125 86 76 18
21 Population growth (pg) g 146 100 88 21
22 Joos & HSP Φ, ξ0 8.9 509 351 308 72
23 Joos & p (13) Φ, κ 8.9 133 92 80 19
24 Joos & pg Φ, g 156 107 94 22
25 Joos & HSP & p (13) Φ, ξ0, κ 8.9 587 405 356 83
26 Joos & HSP & pg Φ, ξ0, g 688 473 416 97
27 Joos & p (13) & pg Φ, κ, g 180 124 109 25
28 Joos & HSP & p (13) & pg Φ, ξ0, κ, g 795 547 480 112

0.1%
29 low discounting 26 361 290 255 59

30 ACE-Joos (Joos) Φ 30 409 328 288 67

31 HSP-damages (HSP) ξ0 26 1600 1280 1130 262
32 productivity eq. (13) κ 26 421 338 296 69
33 Population growth (pg) g 500 400 351 82

34 Joos & HSP Φ, ξ0 30 1810 1450 1270 296
35 Joos & prod eq (13) Φ, κ 30 476 382 335 78
36 Joos & pg Φ, g 567 454 398 93
37 Joos & HSP & p (13) Φ, ξ0, κ 30 2100 1690 1480 345
38 Joos & HSP & pg Φ, ξ0, g 2510 2000 1760 410
39 Joos & p (13) & pg Φ, κ, g 660 528 464 108
40 Joos & HSP & p (13) & pg Φ, ξ0, κ, g 2920 2330 2050 477

Table 1—: Quantitative results. “r.p.t.p.”=rate of pure time preference. “Carb Mult”=
Carbon-based multiplier in SCC (non-stationary for population growth). “w/o TD”=
without temperature delay (cutting temperature related terms from SCC). “HSP-damages”
uses Section II.C’s calibration of damages to Howard and Sterner (2017) and Pindyck (2020).
For population growth see Section III.E. The “productivity recal” and “population growth
recalibrated” (pg-re) scenarios (”x” in the first column) recalibrate time preference. In con-
trast, “production eq. (13)” (p 13) and “population growth” (pg) use equation (13) taking β
and κ as model input, see Proposition 4 in Appendix A.A1 for details.


